Lecture 18: Shortest Paths IV - Speeding up Dijkstra

Lecture Overview

- Single-source single-target Dijkstra
- Bidirectional search
- Goal directed search - potentials and landmarks

Readings

DIJKSTRA single-source, single-target

```
Initialize()
Q ← V[G]
while Q ≠ φ
    do u ← EXTRACT_MIN(Q) (stop if u = t!)
    for each vertex v ∈ Adj[u]
        do RELAX(u, v, w)
```

Observation: If only shortest path from s to t is required, stop when t is removed from Q, i.e., when u = t

DIJKSTRA Demo

![Diagram of a graph with vertices A, B, C, D, and E, and edges with weights.

Figure 1: Dijkstra Demonstration with Balls and String]
Bi-Directional Search

Note: Speedup techniques covered here do not change worst-case behavior, but reduce the number of visited vertices in practice.

![Diagram of Bi-Directional Search](image)

Figure 2: Bi-directional Search

Bi-D Search

Alternate forward search from s
backward search from t
(follow edges backward)

$d_f(u)$ distances for forward search
$d_b(u)$ distances for backward search

Algorithm terminates when some vertex w has been processed, i.e., deleted from the queue of both searches, Q_f and Q_b

![Diagram of Bi-D Search](image)

Figure 3: Bi-D Search
Subtlety: After search terminates, find node x with minimum value of $d_f(x) + d_b(x)$. x may not be the vertex w that caused termination as in example to the left! Find shortest path from s to x using Π_f and shortest path backwards from t to x using Π_b.

Note: x will have been deleted from either Q_f or Q_b or both.

Figure 4: Forward and Backward Search

Minimum value for $d_f(x) + d_b(x)$ over all vertices that have been processed in at least one search

$$d_f(u) + d_b(u) = 3 + 6 = 9$$
\[d_f(u') + d_b(u') = 6 + 3 = 9 \]
\[d_f(w) + d_b(w) = 5 + 5 = 10 \]

Goal-Directed Search or \(A^* \)

Modify edge weights with potential function over vertices.

\[\overline{w} (u, v) = w (u, v) - \lambda(u) + \lambda(v) \]

Search toward target:

![Figure 5: Targeted Search](image)

Correctness

\[\overline{w}(p) = w(p) - \lambda_t(s) + \lambda_t(t) \]

So shortest paths are maintained in modified graph with \(\overline{w} \) weights.

![Figure 6: Modifying Edge Weights](image)

To apply Dijkstra, we need \(\overline{w}(u, v) \geq 0 \) for all \((u, v)\).

Choose potential function appropriately, to be feasible.

Landmarks

Small set of landmarks \(LCV \). For all \(u \in V \), \(l \in L \), pre-compute \(\delta(u, l) \). Potential \(\lambda^{(t)}_l(u) = \delta(u, l) = \delta(t, l) \) for each \(l \).

CLAIM: \(\lambda^{(t)}_l \) is feasible.
Feasibility

\[\bar{w}(u, v) = w(u, v) - \lambda^{(l)}_t(u) + \lambda^{(l)}_t(v) \]
\[= w(u, v) - \delta(u, l) + \delta(t, l) + \delta(v, l) - \delta(t, l) \]
\[= w(u, v) - \delta(u, l) + \delta(v, l) \geq 0 \text{ by the } \Delta \text{-inequality} \]
\[\lambda_t(u) = \max_{l \in L} \lambda^{(l)}_t(u) \text{ is also feasible} \]