6.006 Recitation

Build 2008.7
Outline

• Basic concepts review
• AVL algorithms
• Python implementation for AVLs
BST Invariants

- Binary rooted tree
- All left descendants have keys < node’s key
- All right descendants have keys > node’s key
Node Height

- Leaves: height = 0
- Inner nodes: height = \( \text{max(children height)} + 1 \)
- Null tree: height = -1
- Rationale:
  - A subtree operation takes \( O(h) \) time
Node Height

- Leaves: height = 0
- Inner nodes: height = \text{max(children height)} + 1
- Null tree: height = -1
- Rationale:
  - a subtree operation takes $O(h)$ time
Node Height

- Leaves: height = 0
- Inner nodes: height = \text{max(children height)} + 1
- Null tree: height = -1
- Rationale:
  - A subtree operation takes $O(h)$ time
Node Height

- Leaves: height = 0
- Inner nodes: height = max(children height) + 1
- Null tree: height = -1
- Rationale:
  - a subtree operation takes $O(h)$ time
Node Height

- Leaves: height = 0
- Inner nodes: height = \text{max(children height)} + 1
- Null tree: height = -1

Rationale:
- A subtree operation takes $O(h)$ time
Node Height

- Leaves: height = 0
- Inner nodes: height = max(children height) + 1
- Null tree: height = -1
- Rationale:
  - a subtree operation takes $O(h)$ time
Balanced Trees

- Small tree height means fast operations
- Pack many nodes in trees with low heights
- Perfectly balanced tree: \( 2^{h+1} - 1 \) nodes
- We only care about asymptotic notation
  - Nodes = \( f(\text{height}) \) must be exponential
AVL Trees

- Regular BST with extra invariants:
  - absolute value(left child height - right child height) <= 1
  - Each subtree is AVL
Least dense structure

- Nodes(-1) = 0
- Nodes(0) = 1
- Nodes(h) = 1 + Nodes(h-1) + Nodes(h-2)
- Looks like Fibonacci, must be exponential
Pwnage with AVLs 101

- Goals
  - Reuse the code we wrote before
  - Start with an AVL, end up with an AVL
- Managerial Input (the ‘doh’ words)
  - Insert and delete like it’s a BST
  - Patch to make it an AVL again
Key Observation
Key Observation

Adding or removing a node only upsets the heights on a single path to the root.
Pwnage with AVLs 201

- Will obviously have to move nodes around
- But must keep track of
  - Height
  - Augmented data
  - Invariants for AVL, BST
- Need a tool that preserves most structure
Uberpoke (rotations)
Huh? Do that again?
Rebalancing

- Rotations are quite teh uberpoke
- Need a master plan for using them
  - Managerial Input: call it ‘rebalancing’
  - Divide and conquer: start from the bottom, fix up the tree level by level
Rebalancing: easy

\[
\begin{align*}
&\text{Rebalancing: easy} \\
&\text{or: (} \\
\end{align*}
\]
Rebalancing: easy

A

k-1

or

B

C

k

Rotate left

k+1

y

x

:((
Rebalancing: easy

Rotate left

#: (x
 y
  k+1
 k-1
 A
 B
 C
 k-1
 k
 or k

y
 k+1
 k
 or k+1
 x
 C
 k
 A
 B
 C
 k-1
 k
 or k
 or k
Rebalancing: easy?
Rebalancing: easy?

Rotate left

>:(
Rebalancing: easy?

Rotate left:

Before:
- Node x
- Left child y
- Right child k+1
- k-1

After:
- Node y
- Left child k+1
- Right child k

A → B → C
WTF?

Rotate left

Before:

\[ k-1 \]

\[ k \]

\[ k+1 \]

\[ A \]

\[ B \]

\[ C \]

After:

\[ k+1 \]

\[ k-1 \]

\[ y \]

\[ x \]

\[ A \]

\[ B \]

\[ C \]
WTF?

Rotate left

\[
\begin{align*}
&k-1 & & k & & k-1 \\
&k-1 & & y & & k+1 \\
&A & & B & & C \\
\end{align*}
\]
WTF?

```
A
k-1

k

B

k+1

y

x

:(

B cannot be taller than C
```

Rotate left

```
A
k-1

k

B

k+1

y

x

:(

k-1

C

k

B

k+1
```

WTF?
Rebalancing: hack it up

\[ : (x) \]

\[ y \]

\[ k+1 \]

\[ A \]

\[ k-1 \]

\[ z \]

\[ k \]

\[ C \]

\[ k-1 \]

\[ k-1 \]

\[ D \]

\[ k-1 \]

\[ E \]

\[ k-2 \]

\[ k-2 \]
Rebalancing: hack it up

Rotate right

A

B

C

D

E

:(
Rebalancing: hack it up

Rotate right

...
and in the end it’s right
and in the end it’s right

Rotate left

A

D

E

x

z

y

k

k+1

k-1

k-1

k-1 or k-2

k-1 or k-2

k-1

C
and in the end it's right

Rotate left

::(x

A

k-1

D

k-1

or

k-2

Y

k

E

k-1

or

k-2

z

k+1

x

A

k-1

D

k-1

or

k-2

k

y

k

z

k+1

E

k-1

or

k-2

C

k-1
Rebalancing one level

- AVL violation at current node
- Right is than left?
  - Right.left taller than right.right?
    - Rotate right to the right
  - Either way, rotate current to the left
- Left is heavier than right: symmetry
Rebalancing wrap-up

- Know how to fix one level, use that to fix everything along the path to the root
- Must recompute height on-the-go
  - If recomputing for all nodes along the path on each rotation, $O(\log^2(h))$
- Why is rebalancing $O(\log(h))$?
Python Code

‘cause you can’t live on bubbles and lines
AVL Design

- BST
  - incorporate the deletion hack
- AVL
  - inherited from BST, uses AVLnode
- AVLnode
  - does all the heavy lifting
Return values matter!

- `insert`: returns the newly inserted node
- `delete`: returns the deleted node (its parent link still indicates where it was hanging)
```python
class BST(object):
    def __init__(self, NodeType=BSTnode):
        self.root = None
        self.NodeType = NodeType
        self.psroot = self.NodeType(None, None)

    def reroot(self):
        self.root = self.psroot.left

    def insert(self, t):
        if self.root is None:
            self.psroot.left = self.NodeType(self.psroot, t)
            self.reroot()
            return self.root
        else:
            return self.root.insert(t, self.NodeType)
```

class AVL(BST):
    def __init__(self):
        BST.__init__(self, AVLnode)

    def insert(self, t):
        node = BST.insert(self, t)
        node.rebalance()
        self.reroot()

    def delete(self):
        node = BST.delete(self)
        node.parent.rebalance()
        self.reroot()
AVLNode: helpers

```python
1 def height(node):
2     if node is None:
3         return -1
4     else:
5         return node.height

class AVLNode(BSTNode):
10     def update_stats(self):
11         self.height = max(height(self.left), height(self.right)) + 1
12         BSTNode.update_stats(self)
```
class AVLNode(BSTNode):
    def left_rotate(self):
        x = self; y = x.right
        y.parent = x.parent
        if y.parent.left is x:
            y.parent.left = y
        elif y.parent.right is x:
            y.parent.right = y
        x.right = y.left
        if x.right is not None:
            x.right.parent = x
        y.left = x
        x.parent = y
        x.update_stats()
        y.update_stats()
        return y
class AVLnode(BSTnode):
    def rebalance(self):
        if self.key is None:
            return

        self.update_height()
        if height(self.left) >= 2 + height(self.right):
            if height(self.left.left) < height(self.left.right):
                self.left.left_rotate()
                self.right_rotate()
            elif height(self.right) >= 2 + height(self.left):
                if height(self.right.right) < height(self.right.left):
                    self.right.right_rotate()
                    self.left_rotate()
        self.parent.rebalance()