Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 9: Breadth-First Search

Lecture 9: Breadth-First Search

New Unit: Graphs!

e Quiz I next week covers lectures LOI - LO8 on Data Structures and Sorting

e Today, start new unit, lectures L0O9 - 114 on Graph Algorithms

Graph Applications

e Why? Graphs are everywhere!

e any network system has direct connection to graphs

e c.g., road networks, computer networks, social networks

e the state space of any discrete system can be represented by a transition graph
e c.g., puzzle & games like Chess, Tetris, Rubik’s cube

e c.g., application workflows, specifications

Graph Definitions

OO (OO
5 &5

e Graph G = (V, F) is a set of vertices V' and a set of pairs of vertices £ C V' x V.

e Directed edges are ordered pairs, e.g., (u,v) foru,v € V
e Undirected edges are unordered pairs, e.g., {u,v} foru,v € V' i.e., (u,v) and (v, u)
e In this class, we assume all graphs are simple:

- edges are distinct, e.g., (u, v) only occurs once in F (though (v, u) may appear), and
— edges are pairs of distinct vertices, e.g., u # v for all (u,v) € F
— Simple implies |E| = O(|V|?), since | E| < (1) for undirected, < 2('Y) for directed

2 Lecture 9: Breadth-First Search

Neighbor Sets/Adjacencies
e The outgoing neighbor set of u € V is Adj" (u) = {v € V | (u,v) € E}

e The incoming neighbor set of u € Vis Adj” (u) = {v € V| (v,u) € E}

The out-degree of a vertex u € V is deg™ (u) = |Adj* (u)|

The in-degree of a vertex u € V' is deg™ (u) = |Adj™ (u)|

For undirected graphs, Adj™ (u) = Adj*(u) and deg™ (u) = deg™ (u)

Dropping superscript defaults to outgoing, i.e., Adj(u) = Adj" (u) and deg(u) = deg™ (u)

Graph Representations

To store a graph G = (V, E'), we need to store the outgoing edges Adj(u) forall u € V'

First, need a Set data structure Adj to map u to Adj(u)

Then for each u, need to store Adj(u) in another data structure called an adjacency list

Common to use direct access array or hash table for Adj, since want lookup fast by vertex

Common to use array or linked list for each Adj(u) since usually only iteration is needed'

For the common representations, Adj has size O(|V|), while each Adj(u) has size ©(deg(u))

Since Y _.,deg(u) < 2|E| by handshaking lemma, graph storable in O(|V'| + | E|) space

ueV

e Thus, for algorithms on graphs, linear time will mean O(|V'| + |E|) (linear in size of graph)

Examples

e Examples | and 2 assume vertices are labeled {0, 1,...,|V| — 1}, so can use a direct access
array for Adj, and store Adj(u) in an array. Example 3 uses a hash table for Adj.

Ex 1 (Undirected) | Ex 2 (Directed) | Ex 3 (Undirected)
Gl = [| G2 = [| G3 = {
(2, 11, # 0 | (21, # 0 | a: [s, bl, b: [a],
(2, 0, 31, # 1 | [2, 01, # 1 | s: [a, c], c: [s, d, e]l,
[1, 3, 01, # 2 | [11, 2 | d: [c, e, f], e: [c, d, £1,
(1, 21, # 3 1 1 | f: [d, e], g: [1,
\ |

e Note that in an undirected graph, connections are symmetric as every edge is outgoing twice

' A hash table for each Adj(u) can allow checking for an edge (u,v) € E in O(1),) time

Lecture 9: Breadth-First Search 3

Paths
e A path is a sequence of vertices p = (vq, vy, . . ., vx) Where (v;,v;41) € Eforall 1 <i < k.
e A path is simple if it does not repeat vertices?
e The length /(p) of a path p is the number of edges in the path

e The distance 6(u,v) fromu € V to v € V is the minimum length of any path from u to v,
i.e., the length of a shortest path from u to v
(by convention, (u,v) = oo if u is not connected to v)

Graph Path Problems

e There are many problems you might want to solve concerning paths in a graph:

e SINGLE_ PAIR_REACHABILITY(G, s, t): is there a pathin G froms € Vtot € V?

e SINGLE_PAIR_SHORTEST_PATH(G, s, t): return distance d(s, t), and
a shortest pathin G = (V, E) froms € Vtot € V

e SINGLE_SOURCE_ SHORTEST_PATHS(G, s): return §(s,v) for all v € V, and
a shortest-path tree containing a shortest path from s to every v € V' (defined below)

e Each problem above is at least as hard as every problem above it
(i.e., you can use a black-box that solves a lower problem to solve any higher problem)

e We won’t show algorithms to solve all of these problems

e Instead, show one algorithm that solves the hardest in O(|V| 4 |E|) time!

Shortest Paths Tree

e How to return a shortest path from source vertex s for every vertex in graph?

e Many paths could have length Q(|V]), so returning every path could require Q(|V|?) time

Instead, for all v € V/, store its parent P(v): second to last vertex on a shortest path from s

Let P(s) be null (no second to last vertex on shortest path from s to s)

Set of parents comprise a shortest paths tree with O(|V/|) size!
(i.e., reversed shortest paths back to s from every vertex reachable from s)

%A path in 6.006 is a “walk” in 6.042. A “path” in 6.042 is a simple path in 6.006.

4 Lecture 9: Breadth-First Search

Breadth-First Search (BFS)
e How to compute (s, v) and P(v) forallv € V?
e Store d(s,v) and P(v) in Set data structures mapping vertices v to distance and parent
e (If no path from s to v, do not store v in P and set §(s, v) to 0o)
e Idea! Explore graph nodes in increasing order of distance
e Goal: Compute level sets L; = {v | v € V and d(s,v) = i} (i.e., all vertices at distance 7)
e Claim: Every vertex v € L; must be adjacent to a vertex u € L; 1 (i.e., v € Adj(u))
e Claim: No vertex that is in L; for some j < ¢, appears in L;

e Invariant: §(s,v) and P(v) have been computed correctly for all v in any L; for j < ¢

e Basecase (i = 1): Ly = {s}, d(s,s) =0, P(s) = None
e Inductive Step: To compute L;:

— for every vertex uin L;_;:

* for every vertex v € Adj(u) that does not appear in any L; for j < i:
- add v to L;, set 0(s,v) =i, and set P(v) = u

e Repeatedly compute L; from L; for j < ¢ for increasing ¢ until L; is the empty set

e Set d(s,v) = oo for any v € V for which (s, v) was not set

e Breadth-first search correctly computes all 4(s, v) and P(v) by induction
e Running time analysis:
— Store each L; in data structure with ©(|L;|)-time iteration and O(1)-time insertion
(i.e., in a dynamic array or linked list)
— Checking for a vertex v in any L; for j < i can be done by checking for v in P

— Maintain ¢ and P in Set data structures supporting dictionary ops in O(1) time
(i.e., direct access array or hash table)

Algorithm adds each vertex u to < 1 level and spends O(1) time for each v € Adj(u)
Work upper bounded by O(1) x >° ., deg(u) = O(|E|) by handshake lemma
Spend O(|V|) at end to assign (s, v) for vertices v € V' not reachable from s

So breadth-first search runs in linear time! O(|V| + |E|)

ueV

e Run breadth-first search from s in the graph in Example 3

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

