State feedback, observer-based feedback
System ("plant")

\[x[n] \rightarrow q[n] \rightarrow y[n] \]

\[w[n] \]

\[A, b, c^T, d \]

\[\zeta[n] \]
A good model
Observer configuration
State feedback

\[p[n] + x[n] \rightarrow A, b, c^T \]

\[g^T \]

\[q[n] \]
Observer-based controller

\[w[n] \]

\[p[n] \]

\[x[n] \]

\[q[n] \]

\[A, b, c^T \]

Plant

\[y[n] \]

\[\hat{q}[n] \]

\[A, b, c^T \]

Observer

\[\hat{y}[n] \]
Control of inverted Pendulum

Observer-based controller:

\[\dot{p}(t) = 0, \quad \dot{v}(t) = 0, \quad \xi(t) = 0 \]
\[x(t) \text{ generated by observer-based feedback} \]
\[\ell_1 = -7, \quad \ell_2 = -18 \]

State feedback control:

\[\dot{p}(t) = 0, \quad \dot{v}(t) = 0, \quad \xi(t) = 0 \]
\[x(t) \text{ generated by direct state feedback} \]
\[\ell_1 = 14, \quad \ell_2 = 5 \]