Lecture 21 - Multistage Amplifiers (I)

MULTISTAGE AMPLIFIERS

November 22, 2005

Contents:

1. Introduction
2. CMOS multistage voltage amplifier
3. BiCMOS multistage voltage amplifier
4. BiCMOS current buffer
5. Coupling amplifier stages

Reading assignment:

Howe and Sodini, Ch. 9, §§9.1-9.3
Key questions

• How can one build a wide range of high-performance amplifiers using the single-transistor stages studied so far?

• What are the most important considerations when assembling multistage amplifiers:
 – regarding interstage loading?
 – regarding interstage biasing?
1. Introduction

Amplifier requirements are often demanding:

- must adapt to specific kinds of signal source and load,
- must deliver sufficient gain

Single-transistor amplifier stages are very limited in what they can accomplish ⇒ *multistage amplifier*.

Issues:

- What amplifying stages should be used and in what order?
- What devices should be used, BJT or MOSFET?
- How is biasing to be done?
Summary of single stage characteristics:

<table>
<thead>
<tr>
<th>stage</th>
<th>A_{vo}, G_{mo}, A_{io}</th>
<th>R_{in}</th>
<th>R_{out}</th>
<th>key function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>$G_{mo} = g_m$</td>
<td>∞</td>
<td>$r_o//r_{oc}$</td>
<td>transcond. amp.</td>
</tr>
<tr>
<td>CD</td>
<td>$A_{vo} \approx \frac{g_m}{g_m + g_{mb}}$</td>
<td>∞</td>
<td>$\frac{1}{g_m + g_{mb}}$</td>
<td>voltage buffer</td>
</tr>
<tr>
<td>CG</td>
<td>$A_{io} \approx -1$</td>
<td>$\frac{1}{g_m + g_{mb}}$</td>
<td>$r_{oc}//[r_o(1 + g_mR_S)]$</td>
<td>current buffer</td>
</tr>
<tr>
<td>CE</td>
<td>$G_{mo} \approx g_m$</td>
<td>r_π</td>
<td>$r_o//r_{oc}$</td>
<td>transcond. amp.</td>
</tr>
<tr>
<td>CC</td>
<td>$A_{vo} \approx 1$</td>
<td>$r_\pi + \beta(r_o//r_{oc}//R_L)$</td>
<td>$\frac{1}{g_m} + \frac{R_S}{\beta}$</td>
<td>voltage buffer</td>
</tr>
<tr>
<td>CB</td>
<td>$A_{io} \approx -1$</td>
<td>$\frac{1}{g_m}$</td>
<td>$r_{oc}//{r_o[1 + g_m(r_\pi//R_S)]}$</td>
<td>current buffer</td>
</tr>
</tbody>
</table>

Key differences between BJT’s and MOSFETs:

<table>
<thead>
<tr>
<th>BJT</th>
<th>MOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_B = \frac{I_C}{\beta}$ $\gg I_G = 0$</td>
<td></td>
</tr>
<tr>
<td>$g_m = \frac{qI_C}{kT}$ $> g_m = \sqrt{2\frac{W}{L}\mu C_{ox}I_D}$</td>
<td></td>
</tr>
<tr>
<td>$r_o = \frac{V_A}{I_C}$ $> r_o = \frac{1}{\lambda I_D}$</td>
<td></td>
</tr>
</tbody>
</table>
2. CMOS multistage voltage amplifier

☐ Goals:

- high voltage gain
- high R_{in}
- low R_{out}

☐ Good starting point: CS stage

- $R_{in} = \infty$
- $A_{vo} = -g_m(r_o//r_{oc})$, probably insufficient
- $R_{out} = r_o//r_{oc}$, too high
☐ Add second CS stage to get more gain:

- \(R_{in} = \infty \)
- \(A_{vo} = g_{m1}(r_{o1}/r_{oc1})g_{m2}(r_{o2}/r_{oc2}) \)
- but \(R_{out} = r_{o2}/r_{oc2} \), still high

☐ Add CD stage at output:

- \(R_{in} = \infty \)
- \(A_{vo} = g_{m1}(r_{o1}/r_{oc1})g_{m2}(r_{o2}/r_{oc2}) \frac{g_{m3}}{g_{m3} + g_{mb3}} \), still high
- \(R_{out} = \frac{1}{g_{m3} + g_{mb3}} \), now small
3. BiCMOS multistage voltage amplifier

☐ $A_{vo}(CE) > A_{vo}(CS)$ because $r_o(BJT) > r_o(MOSFET)$ and $g_m(BJT) > g_m(MOSFET)$ but...

CS stage is best first stage, since $R_{in} = \infty$.

☐ Add CE stage following CS stage?

Trouble is interstage loading degrades gain:

$$R_{out1} = r_{o1} / r_{oc1} \gg R_{in2} = r_{\pi2}$$

Voltage divider between stages:

$$\frac{R_{in2}}{R_{out1} + R_{in2}} = \frac{r_{\pi2}}{r_{o1} / r_{oc1} + r_{\pi2}} \approx \frac{r_{\pi2}}{r_{o1} / r_{oc1}} \ll 1$$

Additional gain provided by CE stage more than lost in interstage loading.
Use two CS stages, but add CC stage at output:

Interstage loading:

\[
R_{out2} = \frac{r_{o2}}{r_{oc2}}, \quad R_{in3} = r_{\pi3} + \beta_3\left(\frac{r_{o3}}{r_{oc3}}/R_L\right)
\]

Then, interstage loss:

\[
\frac{R_{in3}}{R_{out2} + R_{in3}} = \frac{r_{\pi3} + \beta_3\left(\frac{r_{o3}}{r_{oc3}}/R_L\right)}{r_{o2}/r_{oc2} + r_{\pi3} + \beta_3\left(\frac{r_{o3}}{r_{oc3}}/R_L\right)}
\]

better than trying to use a CE stage, but still pretty bad.

Benefit is that \(R_{out}\) has improved:

\[
R_{out} = R_{out3} = \frac{1}{g_{m3}} + \frac{R_{out2}}{\beta_3} = \frac{1}{g_{m3}} + \frac{r_{o2}/r_{oc2}}{\beta_3}
\]

Since, in general, \(g_m(BJT) > g_m(MOSFET)\), \(R_{out}\) could be better than CD output stage if \(r_{o2}/r_{oc2}\) is not too large. Otherwise, CD stage output is better.
Better voltage buffer: cascade CC and CD output stages.

What is best order? Since $R_{in}(CD) = \infty$, best to place CD first:

Interstage loading:

$$\frac{R_{in3}}{R_{out2} + R_{in3}} = 1$$

$$\frac{R_{in4}}{R_{out3} + R_{in4}} = \frac{r_{\pi4} + \beta_4(r_{o4}/r_{oc4}/R_L)}{g_{m3} + g_{mb3} + r_{\pi4} + \beta_4(r_{o4}/r_{oc4}/R_L)} \approx 1$$

and excellent output resistance:

$$R_{out} = R_{out4} = \frac{1}{g_{m4}} + \frac{R_{out3}}{\beta_4} = \frac{1}{g_{m4}} + \frac{1}{\beta_4(g_{m3} + g_{mb3})}$$
4. BiCMOS current buffer

□ Goals:

- Unity current gain
- Very low R_{in}
- Very high R_{out}

Start with common-base stage:

\[
\begin{align*}
A_{io} & = -1 \\
R_{in} & = \frac{1}{g_m} \\
R_{out} & = r_{oc}/\{r_o[1 + g_m(r_\pi/R_S)]\}
\end{align*}
\]

Note that if R_S is not too low, $R_{out} \simeq r_{oc}/(\beta r_o)$.

Can we further increase R_{out} by adding a second CB stage?
\[\square \text{CB-CB current buffer:} \]

\[R_{\text{out}} = R_{\text{out}2} = r_{o2}/\{r_{o2}[1 + g_{m2}(r_{\pi2}/R_{\text{out}1})]\} \]

Plugging in \(R_{\text{out}1} \approx r_{oc1}/(\beta_1 r_{o1}) \),

\[R_{\text{out}} = r_{o2}/\{r_{o2}[1 + g_{m2}(r_{\pi2}/r_{oc1}/(\beta_1 r_{o1}))]\} \]

But, since \(r_{\pi2} \ll r_{oc1}/(\beta_1 r_{o1}) \), then

\[R_{\text{out}} \approx r_{oc2}/[r_{o2}(1 + g_{m2}r_{\pi2})] \approx r_{oc2}/(\beta_2 r_{o2}) \]

Did not improve anything! The base current limits the number of CB stages that improve \(R_{\text{out}} \) to just one.

Since CG stage has no gate current, cascade it behind CB stage.
CB-CG current buffer:

$$R_{out} = R_{out2} = r_{oc2}/[r_{o2}(1 + g_m R_{out1})]$$

with $$R_{out1} \simeq r_{oc1}/(\beta_1 r_{o1})$$,

$$R_{out} = r_{oc2}/[r_{o2} g_m (r_{oc1}/\beta_1 r_{o1})]$$

Now $$R_{out}$$ has improved by about $$g_m r_{o2}$$, but only to the extent that $$r_{oc2}$$ is high enough...
5. Coupling amplifier stages

□ CAPACITIVE COUPLING

Capacitors of large enough value behave as AC short, so signal goes through but bias is independent for each stage.

Example, CD-CC voltage buffer:

- Advantages:
 - can select bias point for optimum operation
 - can select bias point close to middle of rails for maximum signal swing

- Disadvantages:
 - to approximate AC short, need large capacitors that consume significant area
Direct Coupling: share bias points across stages.

Example, CD-CC voltage buffer:

- **Advantages:**
 - no capacitors: compact

- **Disadvantages:**
 - bias point shared: constrains design
 - bias shifts from stage to stage and can stray too far from center of range

Assumes $V_{BE} = 0.7 \, \text{V}$

$V_{GS} = 1.5 \, \text{V}$
Solution: use PMOS CD stage:

\[
I_{SUP1} \quad 5.0 \, \text{V} \\
1.7 \, \text{V} \\
\]

\[
I_{SUP2} \\
3.2 \, \text{V} \\
2.5 \, \text{V} \\
\]

Assumes \(V_{BE} = 0.7 \, \text{V} \)
\(V_{GS} = 1.5 \, \text{V} \)

Trade-off: \(g_m(\text{PMOS}) < g_m(\text{NMOS}) \rightarrow \) higher \(R_{out} \)

In BiCMOS voltage amplifier:

\[
R_{out} = \frac{1}{g_{m4}} + \frac{1}{\beta_4(g_{m3} + g_{mb3})}
\]
Summary of DC shifts through amplifier stages:

<table>
<thead>
<tr>
<th>Amplifier Type</th>
<th>Transistor Type</th>
<th>NMOS</th>
<th>PMOS</th>
<th>npn</th>
<th>pnp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source/ Common Emitter (CS/CE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>![NMOS Diagram]</td>
<td>![PMOS Diagram]</td>
<td>![nPN Diagram]</td>
<td>![pPN Diagram]</td>
</tr>
<tr>
<td>Common Gate/ Common Base (CG/CB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>![NMOS Diagram]</td>
<td>![PMOS Diagram]</td>
<td>![nPN Diagram]</td>
<td>![pPN Diagram]</td>
</tr>
<tr>
<td>Common Drain/ Common Collector (CD/CC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>![NMOS Diagram]</td>
<td>![PMOS Diagram]</td>
<td>![nPN Diagram]</td>
<td>![pPN Diagram]</td>
</tr>
</tbody>
</table>
Important difference in bias shift between stages in BJT and MOSFET amps:

- In BJT (for npn):
 \[V_{BE} \approx V_{BE,\text{on}} \]
 rather independent of transistor size and current level.

- In MOSFET (for nMOSFET):
 \[V_{GS} = V_T + \frac{2I_D L}{\mu_n C_{ox} W} \]
 Can be engineered through bias current and transistor geometry.

\[\begin{align*}
V_{BE} &= 0.7 \text{ V} \\
V_{GS} &= 1.5 \text{ V}
\end{align*} \]
Key conclusions

• To achieve amplifier design goals, several stages often needed.

• In multistage amplifiers, different stages used to accomplish different goals:

 – voltage gain: common-source, common emitter
 – voltage buffer: common-drain, common collector
 – current buffer: common-gate, common base

• In multistage amplifiers must pay attention to inter-stage loading to avoid unnecessary losses.

• In direct-coupled amplifiers, bias is shared between adjoining stages:

 – must select compromise bias,
 – must pay attention to bias shift from stage to stage.