Lecture 7 - PN Junction and MOS
Electrostatics (IV)

ELECTROSTATICS OF
METAL-OXIDE-SEMICONDUCTOR STRUCTURE

September 29, 2005

Contents:

1. Introduction to MOS structure
2. Electrostatics of MOS at zero bias
3. Electrostatics of MOS under bias

Reading assignment:

Howe and Sodini, Ch. 3, §§3.7-3.8
Key questions

• What is the big deal about the metal-oxide-semiconductor structure?

• What do the electrostatics of the MOS structure look like at zero bias?

• How do the electrostatics of the MOS structure get modified if a voltage is applied across its terminals?
1. Introduction

Metal-Oxide-Semiconductor structure:

MOS at the heart of the electronics revolution:

- *Digital and analog functions*: Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is key element of Complementary Metal-Oxide-Semiconductor (CMOS) circuit family
- *Memory function*: Dynamic Random Access Memory (DRAM) and Flash Erasable Programmable Memory (EPROM)
- *Imaging*: Charge-Couple Device (CCD) camera
- *Displays*: Active-Matrix Liquid-Crystal Displays
- ...
2. MOS electrostatics at zero bias

Idealized 1D structure:

- Metal: does not tolerate volume charge ⇒ charge can only exist at its surface
- Oxide: insulator ⇒ no volume charge (no free carriers, no dopants)
- Semiconductor: can have volume charge (SCR)

Thermal equilibrium can’t be established through oxide; need wire to allow transfer of charge between metal and semiconductor.

MOS structure: sandwich of dissimilar materials ⇒ carrier transfer ⇒ space-charge region at zero bias ⇒ built-in potential
For most metals on p-Si, equilibrium achieved by electrons diffusing from metal to semiconductor and holes from semiconductor to metal:

Remember: $n_0 p_0 = n_i^2$

Fewer holes near Si/SiO$_2$ interface \Rightarrow ionized acceptors exposed (volume space charge)
Space Charge Density

- In semiconductor: space-charge region close to Si/SiO$_2$ interface \Rightarrow can do *depletion approximation*
- In metal: sheet of charge at metal/SiO$_2$ interface
- Overall charge neutrality

\[
\begin{align*}
 x &\leq -t_{ox} & \rho_o(x) &= Q_G \delta(-t_{ox}) \\
 -t_{ox} &< x < 0 & \rho_o(x) &= 0 \\
 0 &< x < x_{do} & \rho_o(x) &= -qN_a \\
 x_{do} &< x & \rho_o(x) &= 0
\end{align*}
\]
Electric field

Integrate Gauss’ equation:

\[
E_o(x_2) - E_o(x_1) = \frac{1}{\epsilon} \int_{x_1}^{x_2} \rho_o(x) dx
\]

At interface between oxide and semiconductor:

change in permittivity \(\Rightarrow \) change in electric field

\[
\epsilon_{ox} E_{ox} = \epsilon_s E_s
\]

\[
\frac{E_{ox}}{E_s} = \frac{\epsilon_s}{\epsilon_{ox}} \approx 3
\]
Start integrating from deep inside semiconductor:

\[
x_{do} < x \quad E_o(x) = 0
\]

\[
0 < x < x_{do} \quad E_o(x) = -\frac{qN_a}{\epsilon_s} (x - x_{do})
\]

\[
-t_{ox} < x < 0 \quad E_o(x) = \frac{\epsilon_s}{\epsilon_{ox}} E_o(x = 0^+) = \frac{qN_a x_{do}}{\epsilon_{ox}}
\]

\[
x < -t_{ox} \quad E_o(x) = 0
\]
□ ELECTROSTATIC POTENTIAL
(with $\phi = 0 @ n_o = p_o = n_i$)

$$\phi = \frac{kT}{q} \ln \frac{n_o}{n_i} \quad \phi = -\frac{kT}{q} \ln \frac{p_o}{n_i}$$

In QNR’s, n_o and p_o known \Rightarrow can determine ϕ:

in n^+ gate: $n_o = N_d^+ \Rightarrow \phi_g = \phi_{n^+}$

in p-QNR: $p_o = N_a \Rightarrow \phi_p = -\frac{kT}{q} \ln \frac{N_a}{n_i}$

Built-in potential:

$$\phi_B = \phi_g - \phi_p = \phi_{n^+} + \frac{kT}{q} \ln \frac{N_a}{n_i}$$
To get $\phi_o(x)$, integrate $E_o(x)$; start from deep inside semiconductor bulk:

$$\phi_o(x_2) - \phi_o(x_1) = - \int_{x_1}^{x_2} E_o(x) \, dx$$

\begin{align*}
\phi_o(x_2) &= \phi_o(x_1) = \phi_p \\
0 < x < x_d &\quad \phi_o(x) = \phi_p + \frac{qN_a}{2\epsilon_s}(x - x_{do})^2 \\
-t_{ox} < x < 0 &\quad \phi_o(x) = \phi_p + \frac{qN_a x_{do}^2}{2\epsilon_s} + \frac{qN_a x_{do}}{\epsilon_{ox}}(-x) \\
x < -t_{ox} &\quad \phi_o(x) = \phi_{p^+}
\end{align*}
Still don’t know $x_{do} \Rightarrow$ need one more equation:

Potential difference across structure has to add up to ϕ_B:

$$\phi_B = V_{B,o} + V_{ox,o} = \frac{qN_ax_{do}^2}{2\epsilon_s} + \frac{qN_ax_{do}t_{ox}}{\epsilon_{ox}}$$

Solve quadratic equation:

$$x_{do} = \frac{\epsilon_s}{\epsilon_{ox}}t_{ox}\left[\sqrt{1 + \frac{2\epsilon_{ox}^2\phi_B}{\epsilon_s qN_a t_{ox}^2}} - 1\right] = \frac{\epsilon_s}{C_{ox}}\left[\sqrt{1 + \frac{4\phi_B}{\gamma^2}} - 1\right]$$

where C_{ox} is capacitance per unit area of oxide [units: F/cm^2]:

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

and γ is body factor coefficient [units: $V^{-1/2}$]:

$$\gamma = \frac{1}{C_{ox}}\sqrt{2\epsilon_s qN_a}$$
□ Numerical example:

\[N_d = 10^{20} \, cm^{-3}, \quad N_a = 10^{17} \, cm^{-3}, \quad t_{ox} = 8 \, nm \]

\[\phi_B = 550 \, mV + 420 \, mV = 970 \, mV \]

\[C_{ox} = 4.3 \times 10^{-7} \, F/cm^2 \]

\[\gamma = 0.43 \, V^{1/2} \]

\[x_{do} = 91 \, nm \]
There are also *contact potentials*
⇒ total contact-to-contact potential difference is zero!
3. MOS electrostatics under bias

Apply voltage to gate with respect to semiconductor:

Electrostatics of MOS structure affected \Rightarrow potential difference across entire structure now $\neq 0$.

How is potential difference accommodated?

Potential can drop in:

- gate contact
- n^+-polysilicon gate
- oxide
- semiconductor SCR
- semiconductor QNR
- semiconductor contact
Potential difference shows up across oxide and SCR in semiconductor:

Oxide is insulator ⇒ no current anywhere in structure

In SCR, quasi-equilibrium situation prevails
⇒ new balance between drift and diffusion

- electrostatics qualitatively identical to zero bias (but *amount of charge redistribution is different*)
- \(np = n^2_i \)
Apply $V_{GB} > 0$: potential difference across structure increases \Rightarrow need larger charge dipole \Rightarrow SCR expands into semiconductor substrate:

Simple way to remember:
with $V_{GB} > 0$, gate attracts electrons and repels holes.
Qualitatively, physics unchanged by applying $V_{GB} > 0$.

Use mathematical formulation of zero bias, but:

$$\phi_B \rightarrow \phi_B + V_{GB}$$

For example,

$$x_d(V_{GB}) = \frac{\epsilon_s}{C_{ox}} \left[\sqrt{1 + \frac{4(\phi_B + V_{GB})}{\gamma^2}} - 1 \right]$$

$$V_{GB} \uparrow \rightarrow x_d \uparrow$$
Key conclusions

• Charge redistribution in MOS structure at zero bias:
 – SCR in semiconductor
 – built-in potential across MOS structure.

• In most cases, can do depletion approximation in semiconductor SCR.

• Application of voltage modulates depletion region width in semiconductor. No current flows.