Lecture 13 - Digital Circuits (II)

MOS Inverter Circuits

October 25, 2005

Contents:

1. NMOS inverter with resistor pull-up (cont.)
2. NMOS inverter with current-source pull-up
3. Complementary MOS (CMOS) Inverter

Reading assignment:

Howe and Sodini, Ch. 5, §5.3
Key questions

• What are the key design trade-offs of the NMOS inverter with resistor pull-up?
• How can one improve upon these trade-offs?
• What is special about a CMOS inverter?
1. NMOS inverter with resistor pull-up (cont.)

\[V^+ = V_{DD} \]
\[V_{OUT} = V_{DS} \]
\[V_{OH} = V_{MAX} = V_{DD} \]
\[V_{OL} = V_{MIN} \]
\[V_{IN} = V_{GS} \]

- **Noise margins:**

\[NM_L = V_{IL} - V_{OL} = V_M - \frac{V_{MAX} - V_M}{|A_v(V_M)|} - V_{MIN} \]

\[NM_H = V_{OH} - V_{IH} = V_{MAX} - V_M(1 + \frac{1}{|A_v(V_M)|}) + \frac{V_{MIN}}{|A_v(V_M)|} \]

Need to compute \(|A_v(V_M)| \).
Small-signal equivalent circuit model at V_M (transistor in saturation):

\[
\begin{align*}
\text{vout} &= -g_m \text{vin} \left(r_o / R \right) \\
A_v &= \frac{\text{vout}}{\text{vin}} = -g_m \left(r_o / R \right) \simeq -g_m R \\
|A_v(V_M)| &= g_m(V_M) R
\end{align*}
\]

From here, get NM_L and NM_H using above formulae.
Dynamics

- C_L *pull-down* limited by current through transistor [will study in detail with CMOS]
- C_L *pull-up* limited by resistor ($t_{PLH} \sim RC_L$)
- pull-up slowest
□ Inverter design issues:

noise margins $\uparrow \Rightarrow |A_v| \uparrow \Rightarrow$

- $R \uparrow \Rightarrow RC_L \uparrow \Rightarrow$ slow switching
- $g_m \uparrow \Rightarrow W \uparrow \Rightarrow$ big transistor
 (slow switching at input)

Trade-off between speed and noise margin.

During pull-up, need:

- high current for fast switching,
- but also high resistance for high noise margin.

\Rightarrow use *current source* as pull-up.
2. NMOS inverter with current-source pull-up

I-V characteristics of current source:

\[i_{SUP} \pm \frac{1}{r_{oc}} \]

Equivalent circuit models:

- high current throughout voltage range: \(i_{SUP} \approx I_{SUP} \)
- high small-signal resistance, \(r_{oc} \).
NMOS inverter with current-source pull-up:

Transfer characteristics:

\[V_{IN} \rightarrow V_{DD} \]

High \(r_{oc} \) \(\Rightarrow \) high noise margin
Dynamics:

Faster pull-up because capacitor charged at constant current.
PMOS as current-source pull-up

I-V characteristics of PMOS:

\[I_{Dp} \propto (V_{SG} + V_{Tp})^2 \]

Note: enhancement-mode PMOS has \(V_{Tp} < 0 \).
Circuit and load-line diagram of inverter with PMOS current source pull-up:

Transfer function:
Noise margin:

- compute \(V_M = V_{IN} = V_{OUT} \)
- compute \(|A_v(V_M)| \)

At \(V_M \) both transistors saturated:

\[
I_{Dn} = \frac{W_n}{2L_n} \mu_n C_{ox} (V_M - V_{Tn})^2 \\
\]

\[
-I_{Dp} = \frac{W_p}{2L_p} \mu_p C_{ox} (V_{DD} - V_B + V_{Tp})^2 \\
\]

And:

\[
I_{Dn} = -I_{Dp} \\
\]

Then:

\[
V_M = V_{Tn} + \sqrt{\frac{W_p}{\mu_p L_p \mu_n L_n}} (V_{DD} - V_B + V_{Tp}) \\
\]
Small-signal equivalent circuit model at V_M:

$$A_v = -g_{mn}(r_{on} // r_{op})$$

could be big
Screen shots of NMOS inverter transfer characteristics:

- NMOS inverter with resistor pull-up

- NMOS inverter with current source pull-up
NMOS inverter with current-source pull-up allows fast switching with high noise margins.

But... when $V_{IN} = V_{DD}$, there is a direct current path between supply and ground

⇒ power consumption even if inverter is idling.

Would like to have current source that is *itself* switchable, i.e., it shuts off when input is high ⇒ CMOS!
3. Complementary MOS (CMOS) Inverter

Circuit schematic:

Basic operation:

- $V_{IN} = 0 \Rightarrow V_{OUT} = V_{DD}$

 $V_{GSn} = 0 < V_{Tn} \Rightarrow \text{NMOS OFF}$

 $V_{SGp} = V_{DD} > -V_{Tp} \Rightarrow \text{PMOS ON}$

- $V_{IN} = V_{DD} \Rightarrow V_{OUT} = 0$

 $V_{GSn} = V_{DD} > V_{Tn} \Rightarrow \text{NMOS ON}$

 $V_{SGp} = 0 < -V_{Tp} \Rightarrow \text{PMOS OFF}$

No power consumption while idling in any logic state.
Output characteristics of both transistors:

Note:

\[V_{IN} = V_{GSn} = V_{DD} - V_{SGp} \Rightarrow V_{SGp} = V_{DD} - V_{IN} \]

\[V_{OUT} = V_{DSn} = V_{DD} - V_{SDp} \Rightarrow V_{SDp} = V_{DD} - V_{OUT} \]

\[I_{Dn} = -I_{Dp} \]

Combine into single diagram of \(I_D \) vs. \(V_{OUT} \) with \(V_{IN} \) as parameter.
* no current while idling in any logic state.

Transfer function:

* "rail-to-rail" logic: logic levels are 0 and V_{DD}
* high $|A_v|$ around logic threshold \Rightarrow good noise margins
Transfer characteristics of CMOS inverter in WebLab:
Key conclusions

• In NMOS inverter with resistor pull-up: trade-off between noise margin and speed.

• Trade-off resolved using current-source pull-up: use PMOS as current source.

• In NMOS inverter with current-source pull-up: if $V_{IN} = HI$, power consumption even if inverter is idling.

• Complementary MOS: NMOS and PMOS switch alternatively ⇒

 – no power consumption while idling

 – ”rail-to-rail” logic: logic levels are 0 and V_{DD}

 – high $|A_v|$ around logic threshold ⇒ good noise margins