Lecture 22 - Multistage Amplifiers (II)

DC Voltage and Current Sources

November 29, 2005

Contents:

1. DC voltage sources
2. DC current sources and sinks

Reading assignment:

Howe and Sodini, Ch. 9, §§9.4
Key questions

- How does one synthesize voltage and current sources?
- How can this be done in an economic way?
1. DC voltage sources

- Features of voltage source:
 - A well controlled voltage
 - Voltage does not depend on current drawn from source (low internal resistance).

I-V characteristics of voltage source:

Equivalent circuit model of voltage source:

\[V_s \]

\[R_S \]

Matching with small want.
Consider MOSFET in “diode configuration”:

\[
\begin{align*}
\text{I-V characteristics:} \\
I_D &= \frac{W}{2L} \mu C_{ox} (V_{GS} - V_T)^2 = \frac{W}{2L} \mu C_{ox} (V_{DS} - V_T)^2
\end{align*}
\]

Beyond threshold, MOSFET looks like “diode” with quadratic I-V characteristics.
How does one synthesize a voltage source with this?

Assume a current source is available.

\[V_{GS} = V_{DS} \text{ takes value needed to sink current:} \]

\[I_D = I_{REF} + i_{OUT} = \frac{W}{2L} \mu C_{ox} (v_{OUT} - V_T)^2 \]

Then:

\[i_{OUT} = \frac{W}{2L} \mu C_{ox} (v_{OUT} - V_T)^2 - I_{REF} \]

Solving for \(v_{OUT} \):

\[v_{OUT} = V_T + \frac{I_{REF} + i_{OUT}}{\frac{W}{2L} \mu C_{ox}} \]
v_{OUT} is function of I_{REF} and W/L of MOSFET:

- $I_{REF} \uparrow \Rightarrow v_{OUT} \uparrow$
- $W/L \uparrow \Rightarrow v_{OUT} \downarrow$

\[i_{OUT} \quad i_{OUT} \quad i_{OUT} \]

\[v_{OUT} \quad v_{OUT} \quad v_{OUT} \]

\[-I_{REF1} \quad -I_{REF2} \quad -I_{REF} \]

\[V_T \quad V_T \quad V_T \]

\[\square \text{Small-signal view of voltage source:} \]

\[R_{out} = \frac{1}{g_m / / r_o} \approx \frac{1}{g_m} \]

R_{out} is small (good!).

("current can change a lot w/ voltage changing too much")
PMOS voltage source:

Same operation and characteristics as NMOS voltage source.

PMOS needs to be bigger to attain same R_{out}.
2. DC current sources and sinks

- Features of current source:

 - A well controlled current,

 - supplied current does not depend on voltage across (high internal resistance)

I-V characteristics of current source:

Equivalent circuit model of current source:
Connect voltage source to another MOSFET:

\[I_{OUT} \approx \frac{1}{2} \left(\frac{W}{L} \right)_2 \mu C_{ox} (V_{REF} - V_T)^2 \]

\[I_{REF} \approx \frac{1}{2} \left(\frac{W}{L} \right)_1 \mu C_{ox} (V_{REF} - V_T)^2 \]

Then:

\[I_{OUT} = I_{REF} \frac{\left(\frac{W}{L} \right)_2}{\left(\frac{W}{L} \right)_1} \]

\(I_{OUT} \) scales with \(I_{REF} \) by \(W/L \) ratios of two MOSFETs (current mirror circuit).

Well ”matched” transistors important.

(same \(V_T, t_{ox} \), etc.)
• Small-signal view of current source:

\[R_{out} = r_{o2} \]

I-V characteristics of NMOS current source:
- PMOS current source

- NMOS current source *sinks* current to ground.

- PMOS current source *sources* current from positive supply.

PMOS current mirror:

![PMOS current mirror diagram]

\(V_{DD} \)

\(M_1 \)

\(M_2 \)

\(I_{REF} \)

\(i_{OUT} \)
Multiple current sources

Since there is no DC gate current in MOSFET, can tie up multiple current mirrors to single current source:

\[I_{OUTn} = I_{REF} \left(\frac{W}{L} \right)^n \]

Similar idea with NMOS current sinks:
\(\square \) Multiple current sources and sinks

Often, in a given circuit, we need current sources and sinks. Can build them all out of a single current source:

\[
I_{OUT1} = I_{REF} \left(\frac{W}{L} \right)_1 \left(\frac{W}{L} \right)_R
\]

\[
I_{OUT2} = I_{REF} \left(\frac{W}{L} \right)_2 \left(\frac{W}{L} \right)_R
\]

\[
I_{OUT4} = I_{OUT1} \left(\frac{W}{L} \right)_4 = I_{REF} \left(\frac{W}{L} \right)_4 \left(\frac{W}{L} \right)_1 \left(\frac{W}{L} \right)_3 \left(\frac{W}{L} \right)_R
\]
Generating I_{REF}:

Simple circuit:

\[I_{REF} = \frac{V_{DD} - V_{OUT}}{R} \]

\[V_{OUT} = V_T + \sqrt{\frac{I_{REF}}{2L\mu C_{ox}}} \]

For large W/L, $V_{OUT} \to V_T$:

\[I_{REF} \approx \frac{V_{DD} - V_T}{R} \]

- Advantages:
 - I_{REF} set by value of resistor.

- Disadvantages:
 - V_{DD} also affects I_{REF}.
 - V_T and R are function of temperature $\Rightarrow I_{REF}(T)$.

In real world, more sophisticated circuits used to generate I_{REF} that are V_{DD} and T independent.
□ Can now understand more complex circuits.

Examples:

![Circuit Diagram]

Amp stages:

What does it do?
Can now understand more complex circuits.

Examples:

Amp stages:

What does it do?

CD

voltage buffer
Amp stages:

What does it do?
Amp stages:

What does it do?

transconductance amp.
Amp stages:

What does it do?
Amp stages: CE

What does it do? transconductance amp.
Amp stages:

What does it do?
Amp stages: CS + CD

What does it do? Voltage amp.
Amp stages:

What does it do?
Amp stages: \(CC + CE \)

What does it do? Voltage amp. for signal source with high \(R_s \)
Key conclusions

- Voltage source easily synthesized from current source using MOSFET in diode configuration.
- Current source easily synthesized from current source using current mirror circuit.
- Multiple current sources and sinks with different magnitudes of current can be synthesized from a single current source.
- Voltage and current sources rely on availability of well ”matched” transistors in IC technology.