Review

Depletion approximation for an abrupt p-n junction

Depletion charge storage and depletion capacitance

\[q_{DP}(V_{AB}) = - AqN_{Ap}x_p = - A[2\varepsilon q(\phi_b-V_{AB})\{N_{Ap}N_{Dn}/(N_{Ap}+N_{Dn})\}]^{1/2} \]

\[C_{dp}(V_{AB}) = \left. \frac{\partial q_{DP}}{\partial V_{AB}} \right|_{V_{AB}} = A[\varepsilon q\{N_{Ap}N_{Dn}/(N_{Ap}+N_{Dn})\}^{1/2}(\phi_b-V_{AB})]^{1/2} \]

Biased p-n Diodes

Depletion regions change

Currents flow: two components

- flow issues in quasi-neutral regions
- boundary conditions on p' and n' at -x_p and x_n

Minority carrier flow in quasi-neutral regions

The importance of minority carrier diffusion

Boundary conditions

Minority carrier profiles and currents in QNRs

- Short base situations
- Long base situations
- Intermediate situations
The Depletion Approximation: *an informed first estimate of* \(\rho(x) \)

Assume full depletion for \(-x_p < x < x_n\), where \(x_p \) and \(x_n \) are two unknowns yet to be determined. This leads to:

\[
\rho(x) = \begin{cases}
0 & \text{for } x < -x_p \\
-q N_{Ap} & \text{for } -x_p < x < 0 \\
q N_{Dn} & \text{for } 0 < x < x_n \\
0 & \text{for } x_n < x
\end{cases}
\]

Integrating the charge once gives the electric field

\[
E(x) = \begin{cases}
0 & \text{for } x < -x_p \\
-q N_{Ap} \frac{(x + x_p)}{\epsilon_{Si}} & \text{for } -x_p < x < 0 \\
q N_{Dn} \frac{(x - x_n)}{\epsilon_{Si}} & \text{for } 0 < x < x_n \\
0 & \text{for } x_n < x
\end{cases}
\]

Clif Fonstad, 9/24/09
The Depletion Approximation, cont.:

Integrating again gives the electrostatic potential:

$$\phi(x) = \begin{cases}
\phi_p & \text{for } x < -x_p \\
\phi_p + \frac{qN_{Ap}}{2\varepsilon_{Si}}(x + x_p)^2 & \text{for } -x_p < x < 0 \\
\phi_n - \frac{qN_{Dn}}{2\varepsilon_{Si}}(x - x_n)^2 & \text{for } 0 < x < x_n \\
\phi_n & \text{for } x_n < x
\end{cases}$$

Insisting $E(x)$ is continuous at $x = 0$ yields our first equation relating our unknowns, x_n and x_p:

$$N_{Ap}x_p = N_{Dn}x_n$$ \hspace{1cm} 1

Requiring that the potential be continuous at $x = 0$ gives us our second relationship between x_n and x_p:

$$\phi_p + \frac{qN_{Ap}}{2\varepsilon_{Si}}x_p^2 = \phi_n - \frac{qN_{Dn}}{2\varepsilon_{Si}}x_n^2$$ \hspace{1cm} 2
Comparing the depletion approximation with a full solution:

Example: An unbiased abrupt p-n junction with $N_{Ap} = 10^{17}$ cm$^{-3}$, $N_{Dn} = 5 \times 10^{16}$ cm$^{-3}$
Depletion approximation: Applied bias

Forward bias, $v_{AB} > 0$:

$$v_{AB} > 0: \phi_{v_{AB}} - \phi_{b} - x_{p} - x_{n} = 0$$

Reverse bias, $v_{AB} < 0$:

$$v_{AB} < 0: \phi_{v_{AB}} - \phi_{b} - x_{p} - x_{n} = 0$$

No drop in wire

No drop at contact

No drop in QNR

No drop at contact

In a well built diode, all the applied voltage appears as a change in the the voltage step crossing the SCL

Note: With applied bias we are no longer in thermal equilibrium so it is no longer true that $n(x) = n_i e^{q\phi(x)/kT}$ and $p(x) = n_i e^{-q\phi(x)/kT}$.

Clif Fonstad, 9/24/09
The Depletion Approximation: Applied bias, cont.

Adding v_{AB} to our earlier sketches: assume reverse bias, $v_{AB} < 0$

$$w = \sqrt{2\varepsilon_{Si} \left(\phi_b - v_{AB} \right) \left(N_{Ap} + N_{Dn} \right) \frac{q}{N_{Ap} N_{Dn}}}$$

$$x_p = \frac{N_{Dn} w}{(N_{Ap} + N_{Dn})}, \quad x_n = \frac{N_{Ap} w}{(N_{Ap} + N_{Dn})}$$

$$|E_{pk}| = \sqrt{\frac{2q \left(\phi_b - v_{AB} \right) N_{Ap} N_{Dn}}{\varepsilon_{Si} \left(N_{Ap} + N_{Dn} \right)}}$$

$$\Delta\phi = \phi_b - v_{AB}$$

and $$\phi_b = \frac{kT}{q} \ln \frac{N_{Dn} N_{Ap}}{n_i^2}$$
Example: Same sample, reverse biased -2.4 V

\[
E = \frac{\phi(x)}{kT} n_i e^{\pm q\phi(x)/kT}
\]

\[
\begin{array}{c}
\text{Charge} \\
10^{16}
\end{array}
\begin{array}{c}
\text{Potential} \\
2.0
\end{array}
\begin{array}{c}
\text{E-field} \\
10^4
\end{array}
\begin{array}{c}
p(x), n(x) \\
p(x), n(x)
\end{array}

\text{p-type} \\
N_p = 5 \times 10^{16}
\text{n-type} \\
N_n = 10^{17}

Clif Fonstad, 9/24/09

Lecture 5 - Slide 7

Courtesy of Prof. Peter Hagelstein. Used with permission.
The Depletion Approximation: comparison cont.

Example: Same sample, forward biased 0.6 V

<table>
<thead>
<tr>
<th>p-type</th>
<th>n-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_p = 5 \times 10^{16}$</td>
<td>$N_n = 10^{17}$</td>
</tr>
</tbody>
</table>

1. **Charge**

2. **Potential**

3. **E-field**

4. **E(x), n(x), p(x), n_i e^{\pm q\phi(x)/kT}**

Clif Fonstad, 9/24/09

Courtesy of Prof. Peter Hagelstein. Used with permission.
The value of the depletion approximation

The plots look good, but equally important is that

1. It gives an excellent model for making hand calculations and gives us good values for quantities we care about:
 - Depletion region width
 - Peak electric field
 - Potential step

2. It gives us the proper dependences of these quantities on the doping levels (relative and absolute) and the bias voltage.

Apply bias; what happens?

Two things happen

1. The depletion width changes
 - \((\phi_b - v_{AB})\) replaces \(\phi_b\) in the Depletion Approximation Eqs.

2. Currents flow
 - This is the main topic of today’s lecture
Depletion capacitance: Comparing depletion charge stores with a parallel plate capacitor

Parallel plate capacitor

\[q_{A,PP} = A \frac{\varepsilon}{d} v_{AB} \]

\[C_{PP}(V_{AB}) = \frac{\partial q_{A,PP}}{\partial v_{AB}} \bigg|_{v_{AB} = V_{AB}} = \frac{A \varepsilon}{d} \]

Depletion region charge store

\[q_{A,DP}(v_{AB}) = -A q N_{Ap} x_p (v_{AB}) \]

\[= -A \sqrt{2q \varepsilon_{Si} \left[\phi_b - V_{AB} \right]} \frac{N_{Ap} N_{Dn}}{N_{Ap} + N_{Dn}} \]

\[C_{dp}(V_{AB}) = \frac{\partial q_{A,DP}}{\partial v_{AB}} \bigg|_{v_{AB} = V_{AB}} = \frac{A \varepsilon_{Si}}{w(V_{AB})} \]

Many similarities; important differences.
Bias applied, cont.: With $v_{AB} \neq 0$, it is not true that $n(x) = n_i e^{q\phi(x)/kT}$ and $p(x) = n_i e^{-q\phi(x)/kT}$ because we are no longer in TE. However, outside of the depletion region things are in quasi-equilibrium, and we can define local electrostatic potentials for which the equilibrium relationships hold for the majority carriers, assuming LLI.

Forward bias, $v_{AB} > 0$:

In this region $n(x) \approx n_i e^{q\phi_{QNRn}/kT}$

Reverse bias, $v_{AB} < 0$:

In this region $p(x) \approx n_i e^{-q\phi_{QNRp}/kT}$

Clif Fonstad, 9/24/09
Current Flow

Unbiased junction
Population in equilibrium with barrier

Forward bias on junction
Barrier lowered so carriers to left can cross over it.

Reverse bias on junction
Barrier raised so the few carriers on top spill back down it.
Current flow: finding the relationship between i_D and v_{AB}

There are two pieces to the problem:

- **Minority carrier flow in the QNRs** is what limits the current.
- **Carrier equilibrium across the SCR** determines $n'(-x_p)$ and $p'(x_n)$, the boundary conditions of the QNR minority carrier flow problems.

Diagram:

- Ohmic contact
- Uniform p-type
- Uniform n-type
- Ohmic contact

Dimensions:

- $-w_p$ to $-x_p$
- $-x_p$ to 0
- 0 to x_n
- x_n to w_n

Regions:

- Quasineutral region I
- Space charge region
- Quasineutral region II

Text boxes:

- **Minority carrier flow here determines the electron current**
 - Today's Lecture

- **The values of n' at -x_p and p' at x_n are established here.**
 - Lecture 6

- **Minority carrier flow here determines the hole current**
 - Today's Lecture
Solving the five equations: special cases we can handle

1. Uniform doping, thermal equilibrium (n₀p₀ product, n₀, p₀):
 \[\frac{\partial}{\partial x} = 0, \quad \frac{\partial}{\partial t} = 0, \quad g_L(x,t) = 0, \quad J_e = J_h = 0 \]

 Lecture 1

2. Uniform doping and E-field (drift conduction, Ohms law):
 \[\frac{\partial}{\partial x} = 0, \quad \frac{\partial}{\partial t} = 0, \quad g_L(x,t) = 0, \quad E_x \text{ constant} \]

 Lecture 1

3. Uniform doping and uniform low level optical injection (τ_{min}):
 \[\frac{\partial}{\partial x} = 0, \quad g_L(t), \quad n' \ll p_o \]

 Lecture 2

3'. Uniform doping, optical injection, and E-field (photoconductivity):
 \[\frac{\partial}{\partial x} = 0, \quad E_x \text{ constant}, \quad g_L(t) \]

 Lecture 2

4. Non-uniform doping in thermal equilibrium (junctions, interfaces)
 \[\frac{\partial}{\partial t} = 0, \quad g_L(x,t) = 0, \quad J_e = J_h = 0 \]

 Lectures 3,4

5. Uniform doping, non-uniform LL injection (QNR diffusion)
 \[\frac{\partial N_d}{\partial x} = \frac{\partial N_a}{\partial x} = 0, \quad n' \approx p', \quad n' \ll p_o, \quad J_e \approx qD_e \frac{\partial n'}{\partial x}, \quad \frac{\partial}{\partial t} \approx 0 \]

 TODAY

 Lecture 5
QNR Flow: Uniform doping, non-uniform LL injection

What we have:

Five things we care about (i.e. want to know):

- **Hole and electron concentrations:** \(p(x,t) \) and \(n(x,t) \)
- **Hole and electron currents:** \(J_{hx} (x,t) \) and \(J_{ex} (x,t) \)
- **Electric field:** \(E_x (x,t) \)

And, five equations relating them:

Hole continuity:

\[
\frac{\partial p(x,t)}{\partial t} + \frac{1}{q} \frac{\partial J_h(x,t)}{\partial x} = G - R \approx G_{ext} (x,t) - \left[n(x,t)p(x,t) - n_i^2 \right] r(t)
\]

Electron continuity:

\[
\frac{\partial n(x,t)}{\partial t} - \frac{1}{q} \frac{\partial J_e(x,t)}{\partial x} = G - R \approx G_{ext} (x,t) - \left[n(x,t)p(x,t) - n_i^2 \right] r(t)
\]

Hole current density:

\[
J_h(x,t) = q\mu_h p(x,t)E(x,t) - qD_h \frac{\partial p(x,t)}{\partial x}
\]

Electron current density:

\[
J_e(x,t) = q\mu_e n(x,t)E(x,t) + qD_e \frac{\partial n(x,t)}{\partial x}
\]

Charge conservation:

\[
\rho(x,t) = \frac{\partial [e(x)E_x(x,t)]}{\partial x} \approx q \left[p(x,t) - n(x,t) + N_d (x) - N_a (x) \right]
\]

We can get approximate analytical solutions if 5 conditions are met!
QNR Flow, cont.: Uniform doping, non-uniform LL injection

Five unknowns, five equations, five flow problem conditions:

1. **Uniform doping**
 \[
 \frac{dn_o}{dx} = \frac{dp_o}{dx} = 0 \quad \Rightarrow \quad \frac{\partial n}{\partial x} = \frac{\partial n'}{\partial x}, \quad \frac{\partial p}{\partial x} = \frac{\partial p'}{\partial x}
 \]
 \[p_o - n_o + N_d - N_a = 0 \quad \Rightarrow \quad \rho = q(p - n + N_d - N_a) = q(p' - n')\]

2. **Low level injection**
 (in p-type, for example)
 \[n' << p_o \quad \Rightarrow \quad (np - n_i^2)r \approx n' p_o r = \frac{n'}{\tau_e}\]

3. **Quasineutrality holds**
 \[n' \approx p', \quad \frac{\partial n'}{\partial x} \approx \frac{\partial p'}{\partial x}\]

4. **Minority carrier drift is negligible**
 (continuing to assume p-type)
 \[J_e(x, t) \approx qD_e \frac{\partial n'(x, t)}{\partial x}\]

Note: It is also always true that
\[
\frac{\partial n}{\partial t} = \frac{\partial n'}{\partial t}, \quad \frac{\partial p}{\partial t} = \frac{\partial p'}{\partial t}\]
QNR Flow, cont.: Uniform doping, non-uniform LL injection

With these first four conditions our five equations become:
(assuming for purposes of discussion that we have a p-type sample)

1, 2: \[
\frac{\partial p'(x, t)}{\partial t} + \frac{1}{q} \frac{\partial J_h(x, t)}{\partial x} = \frac{\partial n'(x, t)}{\partial t} - \frac{1}{q} \frac{\partial J_e(x, t)}{\partial x} = g_L(x, t) - \frac{n'(x, t)}{\tau_e}
\]

3: \[
J_e(x, t) \approx +qD_e \frac{\partial n'(x, t)}{\partial x}
\]

4: \[
J_h(x, t) = q\mu_h p(x, t) E(x, t) + qD_h \frac{\partial p'(x, t)}{\partial x}
\]

5: \[
\frac{\partial E(x, t)}{\partial x} = \frac{q}{\varepsilon} \left[p'(x, t) - n'(x, t) \right]
\]

In preparation for continuing to our fifth condition, we note that combining Equations 1 and 3 yields one equation in \(n'(x, t) \):

\[
\frac{\partial n'(x, t)}{\partial t} - D_e \frac{\partial^2 n'(x, t)}{\partial x^2} = g_L(x, t) - \frac{n'(x, t)}{\tau_e}
\]

✓ The time dependent diffusion equation
QNR Flow, cont. Uniform doping, non-uniform LL injection

The time dependent diffusion equation, which is repeated below, is in general still very difficult to solve

\[
\frac{\partial n'(x,t)}{\partial t} - D_e \frac{\partial^2 n'(x,t)}{\partial x^2} = g_L(x,t) - \frac{n'(x,t)}{\tau_e}
\]

but things get much easier if we impose a fifth constraint:

5. **Quasi-static excitation**
 \(g_L(x,t) \) such that all \(\frac{\partial}{\partial t} \approx 0 \)

With this constraint the above equation becomes a second order linear differential equation:

\[
-D_e \frac{d^2 n'(x)}{dx^2} = g_L(x) - \frac{n'(x)}{\tau_e}
\]

which in turn becomes, after rearranging the terms:

\[
\frac{d^2 n'(x)}{dx^2} - \frac{n'(x)}{D_e \tau_e} = -\frac{1}{D_e} g_L(x)
\]

✓ The steady state diffusion equation
QNR Flow, cont.: Solving the steady state diffusion equation

The steady state diffusion equation in **p-type** material is:

\[
\frac{d^2 n'(x)}{dx^2} - \frac{n'(x)}{L_e^2} = -\frac{1}{D_e} g_L(x)
\]

and for **n-type** material it is:

\[
\frac{d^2 p'(x)}{dx^2} - \frac{p'(x)}{L_h^2} = -\frac{1}{D_h} g_L(x)
\]

In writing these expressions we have introduced \(L_e\) and \(L_h\), the minority carrier diffusion lengths for holes and electrons, as:

\[
L_e \equiv \sqrt{D_e \tau_e} \quad L_h \equiv \sqrt{D_h \tau_h}
\]

We'll see that the minority carrier diffusion length tells us how far the average minority carrier diffuses before it recombines.

In a basic **p-n** diode, we have \(g_L = 0\) which means we only need the homogenous solutions, i.e. expressions that satisfy:

n-side: \(\frac{d^2 p'(x)}{dx^2} - \frac{p'(x)}{L_h^2} = 0\)
p-side: \(\frac{d^2 n'(x)}{dx^2} - \frac{n'(x)}{L_e^2} = 0\)
QNR Flow, cont.: Solving the steady state diffusion equation

For convenience, we focus on the n-side to start with and find $p'(x)$ for $x_n \leq x \leq w_n$. $p'(x)$ satisfies

$$\frac{d^2 p'(x)}{dx^2} = \frac{p'(x)}{L_h^2}$$

subject to the boundary conditions:

$$p'(w_n) = 0 \quad \text{and} \quad p'(x_n) = \text{something we'll find next time}$$

The general solution to this static diffusion equation is:

$$p'(x) = Ae^{-x/L_h} + Be^{+x/L_h}$$

where A and B are constants that satisfy the boundary conditions. Solving for them and putting them into this equation yields the final general result:

$$p'(x) = p'(x_n)e^{(w_n-x_n)/L_h}e^{-(x-x_n)/L_h} - \frac{p'(x_n)e^{-(w_n-x_n)/L_h}}{e^{(w_n-x_n)/L_h} - e^{-(w_n-x_n)/L_h}}e^{+(x-x_n)/L_h}$$

for $x_n \leq x \leq w_n$
QNR Flow, cont.: Solving the steady state diffusion equation

We seldom care about this general result. Instead, we find that most diodes fall into one of two cases:

- **Case I** - Long-base diode: \(w_n >> L_h \)
- **Case II** - Short-base diode: \(L_h >> w_n \)

Case I: When \(w_n >> L_h \), which is the situation in an LED, for example, the solution is

\[
p'(x) \approx p'(x_n) e^{-(x-x_n)/L_h} \quad \text{for} \quad x_n \leq x \leq w_n
\]

This profile decays from \(p'(x_n) \) to 0 exponentially as \(e^{-x/L_h} \).

The corresponding hole current for \(x_n \leq x \leq w_n \) in Case I is

\[
J_h(x) \approx -qD_h \frac{dp'(x)}{dx} = \frac{qD_h}{L_h} p'(x_n) e^{-(x-x_n)/L_h} \quad \text{for} \quad x_n \leq x \leq w_n
\]

The current decays to zero also, indicating that all of the excess minority carriers have recombined before getting to the contact.
QNR Flow, cont.: Solving the steady state diffusion equation

Case II: When $L_h >> w_n$, which is the situation in integrated Si diodes, for example, the differential equation simplifies to:

$$\frac{d^2 p'(x)}{dx^2} = \frac{p'(x)}{L_h^2} \approx 0$$

We see immediately that $p'(x)$ is linear: $p'(x) = A x + B$

Fitting the boundary conditions we find:

$$p'(x) \approx p'(x_n) \left[1 - \left(\frac{x - x_n}{w_n - x_n} \right) \right] \text{ for } x_n \leq x \leq w_n$$

This profile is a straight line, decreasing from $p'(x_n)$ at x_n to 0 at w_n.

In Case II the current is constant for $x_n \leq x \leq w_n$:

$$J_h(x) \approx -qD_h \frac{dp'(x)}{dx} = \frac{qD_h}{w_n - x_n} p'(x_n) \text{ for } x_n \leq x \leq w_n$$

The constant current indicates that no carriers recombine before reaching the contact.
QNR Flow, cont.: Uniform doping, non-uniform LL injection

Sketching and comparing the limiting cases: $w_n >> L_h$, $w_n << L_h$

Case I - Long base: $w_n >> L_n$ (the situation in LEDs)

Case II - Short base: $w_n << L_n$ (the situation in most Si diodes and transistors)
QNR Flow, cont.: Uniform doping, non-uniform LL injection

The four other unknowns

⇒ Solving the steady state diffusion equation gives n'.
⇒ Knowing n'..... we can easily get p', J_e, J_h, and E_x:

First find J_e:

$$J_e(x) \approx qD_e \frac{dn'(t)}{dx}$$

Then find J_h:

$$J_h(x) = J_{Tot} - J_e(x)$$

Next find E_x:

$$E_x(x) \approx \frac{1}{q\mu_h p_o} \left[J_h(x) - \frac{D_h}{D_e} J_e(x) \right]$$

Then find p':

$$p'(x) \approx n'(x) + \frac{\varepsilon}{q} \frac{dE_x(x)}{dx}$$

Finally, go back and check that all of the five conditions are met by the solution.

✔ Once we solve the diffusion equation to get the minority excess, n', we know everything.
Current flow: finding the relationship between i_D and v_{AB}

There are two pieces to the problem:

- Minority carrier flow in the QNRs is what limits the current.
- Carrier equilibrium across the SCR determines $n'(-x_p)$ and $p'(x_n)$, the boundary conditions of the QNR minority carrier flow problems.

![Diagram of p-n diode showing current flow and boundary conditions]
The p-n Junction Diode: the game plan for getting \(i_D(v_{AB}) \)

We have two QNR’s and a flow problem in each:

If we knew \(n'(-x_p) \) and \(p'(x_n) \), we could solve the flow problems and we could get \(n'(x) \) for \(-w_p < x < -x_p\), and \(p'(x) \) for \(x_n < x < w_n \) …
…and knowing \(n'(x) \) for \(-w_p < x < -x_p\), and \(p'(x) \) for \(x_n < x < w_n\), we can find \(J_e(x) \) for \(-w_p < x < -x_p\), and \(J_h(x) \) for \(x_n < x < w_n\).

Having \(J_e(x) \) for \(-w_p < x < -x_p\), and \(J_h(x) \) for \(x_n < x < w_n\), we can get \(i_D \) because we will argue that \(i_D(v_{AB}) = A[J_e(-x_p, v_{AB}) + J_h(x_n, v_{AB})] \ldots \)

...but first we need to know \(n'(-x_p, v_{AB}) \) and \(p'(x_n, v_{AB}) \).

We will do this in Lecture 6.
Biased p-n Diodes

Depletion regions change (Lecture 4)

Currents flow: two components
 – flow issues in quasi-neutral regions
 – boundary conditions on p' and n' at \(-x_p\) and \(x_n\)

Minority carrier flow in quasi-neutral regions

The importance of minority carrier diffusion
 – minority carrier drift is negligible

Boundary conditions

Minority carrier profiles and currents in QNRs
 – Short base situations
 – Long base situations

Carrier populations across the depletion region (Lecture 6)

Potential barriers and carrier populations

Relating minority populations at \(-x_p\) and \(x_n\) to \(v_{AB}\)

Excess minority carriers at \(-x_p\) and \(x_n\)