• Announcements
 DP: Discussion of Q13, Q13' impact.
 Gain expressions.

• Review - Output Stages
 DC Offset of an OpAmp
 Push-pull/totem pole output stages

• Specialty Stages, cont. - more useful transistor pairings
 The Marvelous Cascode
 Darlington Connection

• A Commercial Op-Amp Example - the µA-741
 The schematic and chip layout
 Understanding the circuit

• Bounding mid-band - starting high frequency issues
 Review of Mid-band concept
 The Method of Open-Circuit Time Constants
DC off-set at the output of an Operational Amplifier:

DC off-set:

The node between Q_{12} and Q_{13} is a high impedance node whose quiescent voltage can only be determined by invoking symmetry.*

The voltage on these two nodes is equal if there is no input, i.e. $v_{IN1} = v_{IN2} = 0$, and if the circuit is truly symmetrical/matched. This is the high impedance node.

Real-world asymmetries mean the voltage on this node is unpredictable.

In any practical Op Amp, a very small differential input, $v_{IN1} - v_{IN2}$, is required to make the voltage on this node (and V_{OUT}) zero.

The voltage symmetry says will be at this node.

The voltage we need at this node to make $V_{OUT} = 0$.

Clif Fonstad, 12/1/09

Lecture 22 - Slide 2
DC off-set at the output of an Op Amp, cont:

DC off-set:

The transfer characteristic, \(v_{OUT} \) vs \((v_{IN1} - v_{IN2})\), will not in general go through the origin, i.e.,

\[
v_{OUT} = A_{vd}(v_{IN1} - v_{IN2}) + V_{OFFSET}
\]

In the example in the figure \(A_{vd} \) is \(-2\times10^6\), and \(V_{OFFSET} \) is 0.1 V.

In a practice, an Op Amp will be used in a feed-back circuit like the example shown to the left, and the value of \(v_{OUT} \) with \(v_{IN} = 0 \) will be quite small. For this example (in which \(A_{vd} = -2\times10^6\), and \(V_{OFFSET} = 0.1 \) V) \(v_{OUT} \) is only 0.1 µV.

In the D.P. you are asked for this value for your design.
Specialty pairings: Push-pull or Totem Pole Output Pairs

A source follower output:
- Using a single source follower as the output stage must be biased with a relatively large drain current to achieve a large output voltage swing, which in turn dissipates a lot of quiescent power.

\[I_{\text{BIAS}} \]

\[v_{\text{IN}} \text{ goes positive} \]
\[v_{\text{OUT}} \text{ goes positive} \]
Load current is supplied through Q\textsubscript{28} as it turns on more strongly

As Q turns off, \(I_{\text{BIAS}} \) flows through load.

Negative \(v_{\text{OUT}} \) swing limited to \(-I_{\text{BIAS}}R_L\)
Specialty Pairings: The Push-pull or Totem Pole Output

A stacked pair of complementary emitter- or source-followers

- Large input resistance
- Voltage gain near one
- Small output resistance
- Low quiescent power

For npn or n-MOS followers:
- \(V_+ \) and \(V_- \)
- \(v_{in} + V_{BEn} \) and \(v_{in} - V_{EBp} \)

For pnp or p-MOS followers:
- \(V_+ \) and \(V_- \)
- \(v_{in} + V_{GSn} \) and \(v_{in} - V_{SGp} \)

Clif Fonstad, 12/1/09
Specialty pairings: Push-pull or Totem Pole in Design Prob.

Comments/Observations:
- The D.P. output stage involves four emitter follower building blocks arranged as two parallel cascades of two emitter follower stages each.
- Q_{20} and Q_{21} with joined sources at the output node is called a push-pull, or totem pole pair.
- They determine the output resistance of the amplifier.
- Ideally the output stage voltage gain is ≈ 1.

![Circuit Diagram](image)
Specialty pairings: Push-pull or Totem Pole in D.P., cont.

Operation: The npn follower supplies current when the input goes positive to push the output up, while the pnp follower sinks current when the input goes negative to pull the output down.

- The input resistance, r_{out}, is highest about zero output, and there it is the output resistance of the two follower stages in parallel.
- r_{in} is lowest at this point, too, and is a parallel combination, also.

\[r_{\text{out}} \approx r_{\text{out1}} || r_{\text{out2}}\]
\[r_{\text{in}} \approx r_{\text{in1}} || r_{\text{in2}}\]
Specialty pairings: Push-pull or Totem Pole, cont.

Voltage gain:
- The design problem uses a bipolar totem pole. The gain and linearity of this stage depend on the bias level of the totem pole. The gain is higher for with higher bias, but the power dissipation is also.

To calculate the large signal transfer characteristic of the bipolar totem pole we begin with v_{OUT}:

$$v_{OUT} = R_L \left(-i_{E20} - i_{E21}\right)$$

The emitter currents depend on $(v_{IN} - v_{OUT})$:

$$i_{E20} = -I_{E20} e^{(v_{IN} - v_{OUT})/V_t}, \quad i_{E21} = I_{E21} e^{-(v_{IN} - v_{OUT})/V_t}$$

Putting this all together, and using $I_{E21} = -I_{E20}$, we have:

$$v_{OUT} = R_L I_{E20} \left(e^{(v_{IN} - v_{OUT})/V_t} - e^{-(v_{IN} - v_{OUT})/V_t} \right)$$

$$= 2R_L I_{E20} \sinh \left(\frac{v_{IN} - v_{OUT}}{V_t} \right)$$

We can do a spread-sheet solution by picking a set of values for $(v_{IN} - v_{OUT})$, using the last equation to calculate the v_{OUT}, using this v_{OUT} to calculate v_{IN}, and finally plotting v_{OUT} vs v_{IN}. The results are seen on the next slide.
Voltage gain, cont.:
- With a 50 Ω load and for several different bias levels we find:

The gain and linearity are improved by increasing the bias current, but the cost is increased power dissipation.

The A_v is lowest and r_{out} is highest at the bias point (i.e., $V_{IN} = V_{OUT} = 0$). r_{in} to the stage is also lowest there.
Specialty pairings: Push-pull or Totem Pole in D.P., cont.

Reviewing the voltage gain of an emitter follower:

\[i_{in} = i_b \]

\[v_{in} = \beta i_b \]

\[r_\pi \]

\[r_l \]

\[r_{oBias} \]

\[r_o \]

\[v_{out} = A_v v_{in} \]

\[v_{out} = (\beta + 1)i_b \left(r_l \parallel r_o \parallel r_{Bias} \right) \]

\[v_{in} = i_b r_\pi + (\beta + 1)i_b \left(r_l \parallel r_o \parallel r_{Bias} \right) \]

\[A_v = \frac{v_{out}}{v_{in}} = \frac{(\beta + 1)(r_l \parallel r_o \parallel r_{Bias})}{r_\pi + (\beta + 1)(r_l \parallel r_o \parallel r_{Bias})} \approx \frac{(\beta + 1)r_l}{r_\pi + (\beta + 1)r_l} \]

Note:

- The voltage gains of the third-stage emitter followers (Q\textsubscript{25} and Q\textsubscript{26}) will likely be very close to one, but that of the stage-four followers might be noticeably less than one.

Clif Fonstad, 12/1/09
Specialty Pairings: The Cascode

Common-source stage followed by a common gate stage

- Large output resistance
- Good high frequency performance

Common Gate

Common Source
Specialty Pairings: The Cascode, cont.

Two-Port Analysis

\[G_{i,cs} = 0, \ G_{m,cs} = -g_{m,Q_{cs}}, \ G_{o,cs} = g_{o,Q_{cs}} \]

Cascode two-port:

\[G_{i,cc} = 0, \ G_{m,cc} \approx -g_{m,Q_{cs}}, \ G_{o,cc} \approx g_{o,Q_{cs}} \frac{g_{o,Q_{cg}}}{g_{m,Q_{cg}}} \]

Same \(G_i \) and \(G_m \) of CS stage, with the very much larger \(G_o \) of CG.
Specialty Pairings: The Cascode, cont.

Cascode two-port:

\[G_{i,CC} = 0, \quad G_{m,CC} \approx -g_{m,Q_{cs}}, \quad G_{o,CC} \approx g_{o,Q_{cs}} \frac{g_{o,Q_{cg}}}{g_{m,Q_{cg}}} \]

The equivalent Cascode transistor:

The cascode two-port is that of a single MOSFET with the \(g_m \) of the first transistor, and the output conductance of common gate.
Specialty Pairings: The Cascode, cont.

Cascode current mirrors: alternative connections

Large differential output resistance

Enhanced swing cascode

The output resistances and load characteristics are identical, but the Wilson load is balanced better in bipolar applications, and the enhanced swing cascode has the largest output voltage swing of any of them.
Specialty pairings: Cascodes in a DP-like amplifier

Comments/Observations:

This stage is essentially a normal source-coupled pair with a current mirror load, but there are differences...

The **first** difference is that two driver transistors are cascode pairs.

The **second** difference is that the current mirror load is also cascoded.

The **third** difference is that the stage is not biased with a current source, but is instead biased by the first gain stage.
Specialty pairings: Cascodes in a DP-like amplifier, cont.

\[+1.5 \text{ V} \]

\[Q_1 \quad V_{REF1} \quad Q_2 \]

\[Q_3 \quad Q_4 \]

\[Q_5 \quad V_{REF2} \quad Q_6 \]

\[Q_7 \quad Q_8 \]

\[-1.5 \text{ V} \]

\[\begin{align*}
Q_{CC1} &= Q_1/Q_3 \\
Q_{CC2} &= Q_2/Q_4 \\
Q_{CC3} &= Q_7/Q_5 \\
Q_{CC4} &= Q_8/Q_6
\end{align*} \]

Common sources

Common gates

\[\begin{array}{c|c|c}
Q_{CC1} & g_{m,CC} & g_{o,CC} \\
Q_{CC2} & g_{m1} & g_{o1}g_{o3}/g_{m3} \\
Q_{CC3} & g_{m2} & g_{o2}g_{o4}/g_{m4} \\
Q_{CC4} & g_{m7} & g_{o7}g_{o5}/g_{m5} \\
\end{array} \]

Clif Fonstad, 12/1/09
Specialty pairings: The Cascode, cont.

The Folded Cascode: another variation
Specialty pairings: The Darlington Connection

A bipolar pair stage used to get a large input resistance

Input resistance

\[r_{in} = 2\beta r_{\pi 2} = 2\beta^2 / g_{m2} \]

Output resistance

\[r_{out} = 1/(1.5g_{o2} + g_{load} + g_{in}) \]

Voltage gain

\[A_v \equiv \frac{v_{out}}{v_{in}} = -\frac{g_{m17}}{2(1.5g_{o2} + g_{load} + g_{in})} \]
Multi-stage amplifier analysis and design: The µA741

The circuit: a full schematic

Clif Fonstad, 12/1/09

Lecture 22 - Slide 19

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Multi-stage amplifier analysis and design: The µA741

Figuring the circuit out:

- Emitter-follower/common-base "cascode" differential gain stage
- Current mirror load
- Darlington common-emitter gain stage
- Push-pull output

The full schematic

Another interesting discussion of the µA741:

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.
Multi-stage amplifier analysis and design: The μA741

The chip: a bipolar IC
Mid-band, cont: The mid-band range of frequencies

In this range of frequencies the gain is a constant, and the phase shift between the input and output is also constant (either 0° or 180°).

All of the parasitic and intrinsic device capacitances are effectively open circuits.

All of the biasing and coupling capacitors are effectively short circuits.
Bounding mid-band: frequency range of constant gain and phase

LEC for common source stage with all the capacitors

Biasing capacitors: (C_O, C_S, etc.)
typically in mF range
effectively shorts above \(\omega_{LO} \)

Device capacitors: (C_{gs}, C_{gd}, etc.)
typically in pF range
effectively open until \(\omega_{HI} \)

Mid-band frequencies fall between: \(\omega_{LO} < \omega < \omega_{HI} \)

Common emitter LEC for in mid-band range
Note: \(g_l = g_{sl} + g_{el} \)

What are \(\omega_{LO} \) and \(\omega_{HI} \)?
Estimating ω_{HI} - Open Circuit Time Constants Method

Open circuit time constants (OCTC) recipe:

1. Pick one C_{gd}, C_{gs}, C_μ, C_π, etc. (call it C_1) and assume all others are open circuits.
2. Find the resistance in parallel with C_1 and call it R_1.
3. Calculate $1/R_1C_1$ and call it ω_1.
4. Repeat this for each of the N different C_{gd}'s, C_{gs}'s, C_μ's, C_π's, etc., in the circuit finding ω_1, ω_2, ω_3, ..., ω_N.
5. Define ω_{HI}^* as the inverse of the sum of the inverses of the N ω_i's:
 $$\omega_{HI}^* = [\Sigma(\omega_i)^{-1}]^{-1} = [\Sigma R_i C_i]^{-1}$$
6. The true ω_{HI} is similar to, but greater than, ω_{HI}^*.

Observations:
The OCTC method gives a conservative, low estimate for ω_{HI}.
The sum of inverses favors the smallest ω_i, and thus the capacitor with the largest RC product dominates ω_{HI}^*.
Estimating ω_{LO} - Short Circuit Time Constants Method

Short circuit time constants (SCTC) recipe:

1. Pick one C_O, C_I, C_E, etc. (call it C_1) and assume all others are short circuits.
2. Find the resistance in parallel with C_1 and call it R_1.
3. Calculate $1/R_1C_1$ and call it ω_1.
4. Repeat this for each of the M different C_I's, C_O's, C_E's, C_S's, etc., in the circuit finding ω_1, ω_2, ω_3, ..., ω_M.
5. Define ω_{LO}^* as the sum of the M ω_j's:

 $\omega_{\text{LO}}^* = [\Sigma(\omega_j)] = [\Sigma(R_jC_j)^{-1}]$

6. The true ω_{LO} is similar to, but less than, ω_{LO}^*.

Observations:

The SCTC method gives a conservative, high estimate for ω_{LO}.
The sum of inverses favors the largest ω_j, and thus the capacitor with the smallest RC product dominates ω_{LO}^*.
Summary of OCTC and SCTC results

- **OCTC**: an estimate for ω_{HI}
 1. ω_{HI}^* is a weighted sum of ω's associated with device capacitances: (add RC's and invert)
 2. Smallest ω (largest RC) dominates ω_{HI}^*
 3. Provides a lower bound on ω_{HI}

- **SCTC**: an estimate for ω_{LO}
 1. ω_{LO}^* is a weighted sum of w's associated with bias capacitors: (add ω's directly)
 2. Largest ω (smallest RC) dominates ω_{LO}^*
 3. Provides a upper bound on ω_{LO}
6.012 - Microelectronic Devices and Circuits
Lecture 22 - Diff-Amp Analysis II - Summary

- Design Problem Issues
 Q13, Q13'; voltage gains

- Specialty stages - useful pairings
 Source coupled pairs: MOS
 Push-pull output: Two followers in vertical chain
 Very low output resistance
 Shared duties for positive and negative output swings
 Cascode: Common-source/emitter performance
 Greatly enhanced output resistance
 Find greatly enhanced high frequency performance also
 Darlington: Increased input resistance on a bipolar stage
 µA 741: A workhorse IC showing all of these pairs

- Bounding mid-band
 Open Circuit Time Constant Method: An estimate of ω_{HI}
 Short Circuit Time Constant Method: An estimate of ω_{LO}