Problem 1

You are given an npn bipolar transistor which has uniform doping concentrations $N_{dE} = 10^{19} \text{ cm}^{-3}$, $N_{aB} = 10^{17} \text{ cm}^{-3}$, $N_{dC} = 10^{16} \text{ cm}^{-3}$. Assume the base width is 1 μm from the B-E junction to the B-C junction. The area of the emitter and collector is 10$^{-6}$ cm2, $\mu_n = 1000 \text{ cm}^2/\text{V-sec}$, $\mu_p = 500 \text{ cm}^2/\text{V-sec}$. Ignore the depletion region width of forward biased junctions.

Emitter Base Collector

- W_E - 0 - 1 μm - W_C

1 μm - x_p - 1 μm + x_n

\text{a)} Given $V_{BE} = 0.66\text{V}$ and $V_{BC} = -3\text{V}$ sketch the minority carrier concentration vs. x in all three regions of the device.

\text{b)} Calculate x_n and x_p at the base-collector junction.

\text{c)} Find the emitter width W_E such that $\beta_F = 200$.

\text{d)} Find the collector width W_C such that $\beta_R = 5$.

\text{e)} Calculate I_S
Problem 2

You are given the npn transistor with the parameters and operating point from Problem 1 above, with the additional information that $V_{an} = 20$V.

a) Find the transconductance, g_m

b) Find the input resistance, r_π

c) Find the output resistance r_o

d) What is the minority electron storage Q_{NB}?

e) Find C_π

f) At what frequency does $|1/j\omega C_\pi| = r_\pi$?

Problem 3

Silicon-Germanium bipolar transistors were developed in the late 1980’s to improve the current gain β_F over that of conventional silicon transistors. When the emitter is made of this material we can assume that the intrinsic carrier concentration in the emitter is reduced to 10^9 cm$^{-3}$. This transistor is biased in the forward active region and has a collector current $I_C = 100\mu$A. Use the same dimensions and doping concentrations as Problem 1 for this problem.

a) Calculate the new V_{BE} such that $I_C = 10\mu$A

b) Find the forward active current gain, β_F.

c) Determine the base doping level that will yield the same value of β_F as the transistor would have if its emitter were silicon instead of SiGe?

Problem 4

Howe and Sodini P7.6