Lecture 16
The pn Junction Diode (III)

Outline

• I-V Characteristics (Review)
• Small-signal equivalent circuit model
• Carrier charge storage
 –Diffusion capacitance

Reading Assignment:
Howe and Sodini; Chapter 6, Sections 6.4 - 6.5
1. I-V Characteristics (Review)

Diode Current Equation:

\[I_D = I_o \left[e^{\left(\frac{V_D}{V_{th}}\right)} - 1 \right] \]
Physics of forward bias:

Diode Current equation:

\[I_D = I_o \left[\exp \left(\frac{qV_D}{kT} \right) - 1 \right] \]

- Junction potential \(\phi_j \) (potential drop across SCR) reduced by \(|V_D| \)
 \[\Rightarrow \text{minority carrier injection into QNRs} \]
- Minority carrier diffusion through QNRs
- Minority carrier recombination at contacts to the QNRs (and surfaces)
- Large supply of carriers injected into the QNRs
 \[\Rightarrow I_D \propto \exp \left[\frac{qV_D}{kT} \right] \]
Physics of reverse bias:

\[I_D = I_o \left[\exp \left(\frac{qV_D}{kT} \right) - 1 \right] \]

- Junction potential \(\phi_j \) (potential drop across SCR) increased by \(|V_D| \)
 - \(\Rightarrow \) **minority carrier extraction** from QNRs
- Minority carrier diffusion through QNRs
- Minority carrier generation at surfaces & contacts of QNRs
- Very small supply of carriers available for extraction
 - \(\Rightarrow I_D \) saturates to small value
 - \(\Rightarrow I_D \approx -I_o \)
2. Small-signal equivalent circuit model

Examine effect of small signal overlapping bias:

\[i_D = I_D + i_d = I_o \left[\exp\left(\frac{q(V_D + v_d)}{kT} \right) - 1 \right] \]

If \(v_d \) small enough, linearize exponential characteristics:

\[I_D + i_d = I_o \left[\exp\left(\frac{qV_D}{kT} \right) \exp\left(\frac{qv_d}{kT} \right) - 1 \right] \]

\[= I_o \left[\exp\left(\frac{qV_D}{kT} \right) \left(1 + \frac{qv_d}{kT} \right) - 1 \right] \]

\[= I_o \left[\exp\left(\frac{qV_D}{kT} \right) - 1 \right] + I_o \exp\left(\frac{qV_D}{kT} \right) \frac{qv_d}{kT} \]

Then:

\[i_d = \frac{q(I_D + I_o)}{kT} \cdot v_d \]

From a small signal point of view, Diode behaves as conductance of value:

\[g_d = \frac{q(I_D + I_o)}{kT} \approx \frac{qI_D}{kT} \]
Small-signal equivalent circuit model

\[g_d = \frac{qI_D}{kT} \]

g_d depends on bias. In forward bias, \(g_d \) is linear in diode current.
Capacitance associated with depletion region:

Depletion or junction capacitance:

\[C_j = C_j(V_D) = \frac{dq_J}{dV_D} \bigg|_{V_D} \]

\[C_j = A \sqrt{\frac{q \varepsilon_s N_a N_d}{2(N_a + N_d)(\phi_B - V_D)}} \]
Small-signal equivalent circuit model

\[
C_j = A \sqrt{\frac{q \varepsilon_s N_a N_d}{2(N_a + N_d) \phi_B}} \cdot \sqrt{\frac{\phi_B}{\phi_B - V_D}}
\]

or,

\[
C_j = \frac{C_{jo}}{\sqrt{1 - \frac{V_D}{\phi_B}}}
\]

Under Forward Bias assume

\[
V_D \approx \frac{\phi_B}{2}
\]

\[
C_j = \sqrt{2} C_{jo}
\]

\[C_{jo} \equiv \text{zero-voltage junction capacitance}\]
3. Charge Carrier Storage: diffusion capacitance

What happens to majority carriers?

Carrier picture thus far:

If QNR minority carrier concentration ↑ but majority carrier concentration unchanged? ⇒ quasi-neutrality is violated.
Quasi-neutrality demands that at every point in QNR:

excess minority carrier concentration

= **excess majority carrier concentration**

In n-type Si, at every x:

\[p_n(x) - p_{no} = n_n(x) - n_{no} \]

In p-type Si, at every x:

\[n_p(x) - n_{po} = p_p(x) - p_{po} \]
Quasi-neutrality demands that at every point in QNR:

excess minority carrier concentration

= *excess majority carrier concentration*

Mathematically:

\[p'_n(x) = p_n(x) - p_{no} \approx n'_n(x) = n_n(x) - n_{no} \]

Define integrated carrier charge:

\[q_{pn} = qA \frac{1}{2} \int_{x_n}^{W_n} p'(x_n) \cdot (W_n - x_n) \, dx_n \]

\[= qA \frac{W_n - x_n}{2} \frac{n_i^2}{N_d} \exp \left[\frac{qV_D}{kT} - 1 \right] = -q_{Nn} \]
Now examine small increase in V_D:

Small increase in $V_D \Rightarrow$ small increase in $q_{Pn} \Rightarrow$ small increase in $|q_{Nn}|$

Behaves as capacitor of capacitance:

$$C_{dn} = \left. \frac{dq_{Pn}}{dv_D} \right|_{v_D = V_D} = qA \frac{W_n - x_n}{2} \frac{n_i^2}{N_d} \frac{q}{kT} \exp \left[\frac{qV_D}{kT} \right]$$
Can write in terms of I_{Dp} (portion of diode current due to holes in n-QNR):

$$C_{dn} = \frac{q}{kT} \frac{(W_n - x_n)^2}{2D_p} qA \frac{n_i^2}{N_d} \frac{D_p}{W_n - x_n} \exp\left[\frac{qV_p}{kT}\right]$$

$$\approx \frac{q}{kT} \frac{(W_n - x_n)^2}{2D_p} I_{Dp}$$

Define *transit time* of holes through n-QNR:

$$\tau_{Tp} = \frac{(W_n - x_n)^2}{2D_p}$$

Transit time is the *average time for a hole to diffuse through n-QNR* [will discuss in more detail in BJT]

Then:

$$C_{dn} \approx \frac{q}{kT} \cdot \tau_{Tp} \cdot I_{Dp}$$
Similarly for p-QNR:

\[C_{dp} \approx \frac{q}{kT} \cdot \tau_{Tn} \cdot I_{Dn} \]

where \(\tau_{Tn} \) is *transit time* of electrons through p-QNR:

\[\tau_{Tn} = \frac{(W_p - x_p)^2}{2D_n} \]

Both capacitors sit in *parallel* \(\Rightarrow \) total diffusion capacitance:

\[C_d = C_{dn} + C_{dp} = \frac{q}{kT} (\tau_{Tn}I_{Dn} + \tau_{Tp}I_{Dp}) \]

Complete small-signal equivalent circuit model for diode:

![Circuit Diagram](https://via.placeholder.com/150)
Bias dependence of C_j and C_d:

- C_j dominates in reverse bias and small forward bias
 \[\propto \frac{1}{\sqrt{\phi_B - V_D}} \]

- C_d dominates in strong forward bias
 \[\propto \exp\left[\frac{qV_D}{kT} \right] \]
What did we learn today?

Summary of Key Concepts

Large and Small-signal behavior of diode:

- **Diode Current:**
 \[I = I_o \left(e^{\frac{qV_D}{kT}} - 1 \right) \]

- **Conductance:** associated with current-voltage characteristics
 - \(g_d \propto I \) in forward bias,
 - \(g_d \) negligible in reverse bias

- **Junction capacitance:** associated with charge modulation in depletion region
 \[C_j \propto \frac{1}{\sqrt{\phi_B - V_D}} \]

- **Diffusion capacitance:** associated with charge storage in QNRs to maintain quasi-neutrality.
 \[C_d \propto e^{\frac{qV_D}{kT}} \]