Recitation 3: Carrier Action

Yesterday we talked about the movement of the carriers inside a semiconductor. There is a direct relationship between the velocity of carriers and the electrical current that is generated.

\[
\text{Current Density } = |J_n| = |n \cdot q \cdot v_n| \\
= |J_p| = |p \cdot q \cdot v_p|
\]

This is because:

\[
|I| = \left| \frac{\# \text{ of charges across cross-section area}}{\text{time}} \right| = \left| \frac{Q}{t} \right| = \left| \frac{q \cdot \# \text{ of charges across cross-section area}}{t} \right|
\]

\[
= \left| \frac{q \cdot \# \text{ density} \cdot \text{volume}}{t} \right| = \left| \frac{q \cdot n \cdot L \cdot A}{t} \right| = |q \cdot n \cdot v_n \cdot A| \cdot \frac{L}{t} = \text{velocity}
\]

\[
|I_n| = |J_n| = |q \cdot n \cdot v_n|
\]

<table>
<thead>
<tr>
<th>Table 1: Drift vs. Diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift</td>
</tr>
<tr>
<td>Due to electric field E</td>
</tr>
<tr>
<td>$\frac{dn}{dx}$</td>
</tr>
<tr>
<td>$v_n = \mu_n E$</td>
</tr>
<tr>
<td>$J_n = -q \cdot n \cdot v_n = q \cdot n \cdot \mu_n \cdot E$</td>
</tr>
<tr>
<td>$J_p = q \cdot p \cdot v_p = q \cdot p \cdot \mu_p \cdot E$</td>
</tr>
<tr>
<td>Important Parameter</td>
</tr>
<tr>
<td>$\mu_n = \frac{q \cdot \tau_c}{2 \cdot m_n}$</td>
</tr>
<tr>
<td>$D_n = \frac{kT}{\mu n}$</td>
</tr>
</tbody>
</table>
Note: ** physical intuition rather than remembering the equation **

- Current (can usually measure) always related to charge velocity (can back calculate)
- τ_c (collision time) is related to the **imperfection** of the lattice
- Mobility depends on collision time and temperature:
 1. $\mu \propto \tau_c$: doping (impurity) increases \Rightarrow more collisions \Rightarrow $\mu \downarrow$
 2. temperature (lattice vibration): higher T \Rightarrow more collision \Rightarrow $\mu \downarrow$
- same semiconductor, the difference between μ_n & μ_p are due to m_n & m_p
- high mobility is extremely important for high performance devices

 Si: $\mu_n = 1400 \text{ cm}^2/\text{V sec}$ $\mu_p = 500 \text{ cm}^2/\text{V sec}$ for doping 10^{13} cm^{-3}
 GaAs: $\mu_n = 8000 \text{ cm}^2/\text{V sec}$ $\mu_p = 400 \text{ cm}^2/\text{V sec}$

![Diagram of carrier mobility vs. doping concentration in Si](image-url)

Carrier Mobility vs. Doping Concentration in Si
Example 1: Integrated Resistor

Our first IC device:

\[J = J_n + J_p = q(n\mu_n + p\mu_p)E \]

\[E = \frac{V}{L}, \quad A = w \times t \]

\[I = J \cdot A = \left(q(n\mu_n + p\mu_p) \frac{V}{L} \right) \cdot (w \times t) \]

\[I = \left[q(n\mu_n + p\mu_p) \frac{w \times t}{L} \right] \cdot V \]

But \[I = \frac{V}{R} \text{ Ohm's Law} \]

\[\therefore R = \frac{1}{q(n\mu_n + p\mu_p) \frac{w \times t}{L}} = \frac{1}{q(n\mu_n + p\mu_p)} \cdot \frac{L}{w \times t} = \rho \cdot \frac{L}{w \times t} \]
Resistivity = \(\rho = \frac{1}{q(n\mu_n + p\mu_p)} \) or \(\sigma = q(n\mu_n + p\mu_p) \)

Usually majority dominates resistivity (n-type majority \(\Rightarrow \rho \approx \frac{1}{q \cdot n \cdot \mu_n} \), and vice versa).

Since \(\rho \) (or \(\sigma \)) can be measured easily, it can be used to derive doping of a semiconductor (n or p). If we take a Si wafer, it will be hard to know the doping \(a \ priori \) unless someone specifies the doping level, but we can use resistivity to find out.

Example 2: Resistivity of Si

What is the resistivity of (1) intrinsic Si, (2) Si with \(N_d = 10^{13} \) and (3) Si with \(N_a = 10^{20} \)?

1. \(n_o = p_o = 10^{10} \text{ cm}^{-3} \). Therefore, \(\rho \) is:

\[
\rho = \frac{1}{1.6 \times 10^{-19} \cdot (1450 \text{ cm}^2/\text{V} \cdot \text{sec} \times 10^{10} \text{ cm}^{-3} + 500 \text{ cm}^2/\text{V} \cdot \text{sec} \times 10^{10} \text{ cm}^{-3})} = 1.6 \times 10^{-19} \times 1.95 \times 10^{13} = 3.2 \times 10^5 \Omega \cdot \text{cm} \text{ (make sure the units are correct)}
\]

Poor conductivity, quite insulating

2. \(N_d = 10^{13} \text{ cm}^{-3} \gg n_i = 10^{10} \Rightarrow n_o \approx N_d = 10^{13} \), \(p_o = \frac{n_i^2}{n_o} = 10^7 \)

\[
\rho \approx \frac{1}{q \cdot n \cdot \mu_n + p \cdot \mu_p} = \frac{1}{1.6 \times 10^{-19} \times (1450 \times 10^{13} + 500 \times 10^7)} = 430 \Omega \cdot \text{cm}
\]

(check on the curve)

3. \(N_a = 10^{20} \gg n_i = 10^{10} \), \(p_o \approx N_a = 10^{20} \), \(n_o \approx \frac{n_i^2}{p_o} = 1 \)

\[
\rho \approx \frac{1}{q \cdot p \cdot \mu_p} = \frac{1}{1.6 \times 10^{-19} \times 50 \times 10^{20}} = 1.25 \times 10^{-3} \Omega \cdot \text{cm like metal}
\]

From this example, we can see that Si resistivity can be tuned several orders of magnitude by doping, from insulator-like to metal-like.
Sheet Resistance

\[R = \left(\frac{\rho}{t} \right) \left(\frac{L}{w} \right) \]

The unit of \(\rho \) is \(\Omega \cdot \text{cm} \), the unit of \(t \) is cm meaning that the unit of \(\left(\frac{\rho}{t} \right) \) is \(\Omega \) - that of resistance. We call \(\left(\frac{\rho}{t} \right) \) the sheet resistance \(R_s \). This is a convenient metric for IC design as:

- \(\rho, t \): process and material parameters
- \(\frac{L}{w} \): # of squares with dimensions \(w \) - layout design parameter

Sheet resistance is also a very useful parameter to characterize (thin) film resistivity.

Fabricating an IC Resistor

How to fabricate an IC resistor?

Make an n-type region in a p-type substrate. We will see why this isolation can work soon.