Problem 1 pnp Bipolar Junction Transistor

Parameters for pnp BJT:

- $N_{ae} = 10^{18} \text{ cm}^{-3}$
- $N_{db} = 10^{16} \text{ cm}^{-3}$
- $N_{bc} = 10^{15} \text{ cm}^{-3}$
- $D_{ae} = 20 \text{ cm}^2/\text{s}$
- $D_{nc} = 30 \text{ cm}^2/\text{s}$
- $D_{pb} = 10 \text{ cm}^2/\text{s}$
- $A_E = 100 \mu \text{m}^2$
- $L_B = 1.0 \mu \text{m}$
- $L_E = 2.0 \mu \text{m}$
- $L_C = 3.0 \mu \text{m}$

- L_E and L_C are the distances between the contacts and the abrupt junctions. L_B is the distance between the base-emitter and base-collector abrupt junctions. **Note that L_B, L_B and L_C are not widths of the quasi-neutral regions in the Emitter, Base and Collector.**
- Assume that recombination only occurs at the contacts and that there is no recombination in the quasi-neutral regions or the space charge regions.

a) What are the thermal equilibrium values of the potential barrier for the base-emitter (ϕ_{BE}) and base-collector (ϕ_{BC}) junctions?
b) What is the width of the quasi-neutral base region, W_B at equilibrium?
c) What is β_f (ignore the effect of the depletion region under forward bias for this calculation)?
6.012 Microelectronic Devices and Circuits
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.