I. Wave equation (Lossless)

\[\frac{\partial v}{\partial z} = -L \frac{\partial i}{\partial t} \Rightarrow \frac{\partial^2 v}{\partial t^2} = \frac{1}{2}\frac{\partial^2 v}{\partial z^2} \]

\[c = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\varepsilon \mu}} \]

Solution: \(v(z,t) = V_+ \left(t - \frac{z}{c} \right) + V_- \left(t + \frac{z}{c} \right) \)

Proof: Let \(\alpha = t - \frac{z}{c} \Rightarrow \frac{\partial v}{\partial t} = \alpha, \frac{\partial v}{\partial z} = -\frac{1}{c} \)

Superposition: \(v_+(z,t) = \frac{d v_+}{d \alpha} = \frac{d v_+}{d \alpha} \)

\[\frac{\partial^2 v_+}{\partial z^2} = \frac{c^2 \partial^2 v}{\partial z^2} = c^2 \frac{d^2 v_+}{d \alpha^2} = \frac{d^2 v_+}{d \alpha^2} \]

II. Solution for current \(i(z,t) \)

\[\frac{\partial v}{\partial z} = -L \frac{\partial i}{\partial t} \Rightarrow \frac{\partial^2 i}{\partial t^2} = \frac{c^2 \partial^2 i}{\partial z^2} \]
Solution: $i(z, t) = I_+ (t - \frac{z}{c}) + I_- (t + \frac{z}{c})$
$v(z, t) = V_+ (t - \frac{z}{c}) + V_- (t + \frac{z}{c})$

$+z$ solution: $\alpha = t - \frac{z}{c}, \frac{\partial \alpha}{\partial t} = 1, \frac{\partial \alpha}{\partial z} = -\frac{1}{c}$

\[
\frac{\partial v_+}{\partial z} = -L \frac{\partial i_+}{\partial t} \Rightarrow \frac{dv_+}{\partial \alpha} = \frac{1}{c} \frac{dv_+}{\partial \alpha} = -L \frac{di_+}{\partial \alpha} \frac{\partial \alpha}{\partial t}
\]

\[
\frac{dv_+}{\partial \alpha} = \frac{Lc}{\sqrt{LC}} \frac{di_+}{\partial \alpha} = \sqrt{\frac{L}{C}} \frac{di_+}{\partial \alpha} = Z_0 \frac{di_+}{\partial \alpha}
\]

$v_+ = i_+ Z_0 \Rightarrow I_+ (t - \frac{z}{c}) = Y_0 V_+ (t - \frac{z}{c})$

$Y_0 = \sqrt{\frac{C}{L}} = \frac{1}{Z_0}$

$-z$ solution: $\beta = t + \frac{z}{c}, \frac{\partial \beta}{\partial t} = 1, \frac{\partial \beta}{\partial z} = \frac{1}{c}$

\[
\frac{\partial v_-}{\partial z} = -L \frac{\partial i_-}{\partial t} \Rightarrow \frac{dv_-}{\partial \beta} = \frac{1}{c} \frac{dv_-}{\partial \beta} = -L \frac{di_-}{\partial \beta} \frac{\partial \beta}{\partial t}
\]

\[
\frac{dv_-}{\partial \beta} = -Lc \frac{di_-}{\partial \beta} = - \sqrt{\frac{L}{LC}} \frac{di_-}{\partial \beta} = -\sqrt{\frac{L}{C}} \frac{di_-}{\partial \beta} = -Z_0 \frac{di_-}{\partial \beta}
\]

$v_- = -i_- Z_0 \Rightarrow I_+ \left(t + \frac{z}{c}\right) = -Y_0 V_- \left(t + \frac{z}{c}\right)$

$v(z, t) = V_+ \left(t - \frac{z}{c}\right) + V_- \left(t + \frac{z}{c}\right)$

$i(z, t) = Y_0 \left[V_+ \left(t - \frac{z}{c}\right) - V_- \left(t + \frac{z}{c}\right)\right]$
With $V_-(t + \frac{z}{c}) = 0 \Rightarrow v(z, t) = V_+ \left(t - \frac{z}{c}\right) \Rightarrow \frac{v(z, t)}{i(z, t)} = Z_0$

$i(z, t) = Y_0 V_+ \left(t - \frac{z}{c}\right)$

2. Traveling Wave Solution

$v(z = 0, t) = V(t) = V_+(t)$
$v(z = 0, t) = \frac{Z_0}{Z_0 + R_S} V(t) = V_+(t)$
$i(z = 0, t) = Y_0 V_+(t) = \frac{V(t)}{R_S + Z_0}$
$v(z, t) = \frac{Z_0}{Z_0 + R_S} V \left(t - \frac{z}{c}\right)$
$i(z, t) = \frac{1}{R_S + Z_0} V \left(t - \frac{z}{c}\right)$

![Figure 8-6](image)

(a) A semi-infinite transmission line excited by a voltage source at $z = 0$. (b) To the source, the transmission line looks like a resistor Z_0 equal to the characteristic impedance. (c) The spatial distribution of the voltage $v(z, t)$ at various times for a staircase pulse of $V(t)$. (d) If the voltage source is applied to the transmission line through a series resistance R_s, the voltage across the line at $z = 0$ is given by the voltage divider relation.

B. Reflections from Resistive Terminations

1. Reflection Coefficient

At $z = l$:

$$v(z, t) = V_+ \left(t - \frac{l}{c}\right) + V_- \left(t + \frac{l}{c}\right)$$

$$= i(l, t)R_L$$

$$= Y_0R_L \left[V_+ \left(t - \frac{l}{c}\right) - V_- \left(t + \frac{l}{c}\right)\right]$$

$$\Gamma_L = \frac{V_- (t + \frac{l}{c})}{V_+ (t - \frac{l}{c})} = \frac{R_L - Z_0}{R_L + Z_0}$$

Special cases:

a. $R_L = Z_0 \Rightarrow \Gamma_L = 0$ (matched line)

b. $R_L = 0 \Rightarrow \Gamma_L = -1$ (short circuited line)

If $R_L < Z_0, \Gamma_L < 0$

c. $R_L = \infty \Rightarrow \Gamma_L = +1$ (open circuited line)

If $R_L > Z_0, \Gamma_L > 0$

2. Step Voltage

At $z = 0$:

$$v(z = 0, t) + i(0, t)R_S = V_0$$

$$V_+(z = 0, t) + V_-(z = 0, t) + Y_0R_S [V_+(z = 0, t) - V_-(z = 0, t)] = V_0$$

$$V_+(z = 0, t) = \Gamma_S V_-(z = 0, t) + \frac{Z_0V_0}{Z_0 + R_S}, \Gamma_S = \frac{R_S - Z_0}{R_S + Z_0}$$

a. Matched Line: $R_L = Z_0, \Gamma_L = 0; R_S = Z_0, \Gamma_S = 0$

$$\Gamma_L = 0 \Rightarrow V_- (t + \frac{z}{c}) = 0, V_+ (z = 0, t) = \frac{V_0}{2}, \text{ in steady state after time } T = \frac{l}{c}$$

b. Short circuited line: $R_L = 0, \Gamma_L = -1, R_S = Z_0, \Gamma_S = 0$

$$\Gamma_L = -1 \Rightarrow V_+ = -V_- \text{. When } V_+ (t - \frac{z}{c}) \text{ and } V_- (t + \frac{z}{c}) \text{ overlap in space, } v(z, t) = 0. \text{ For } t \geq 2T = \frac{2l}{c}, v(z, t) = 0, i(z, t) = \frac{V_0}{Z_0}.$$

c. Open circuited line: $R_L = \infty, \Gamma_L = +1, R_S = Z_0, \Gamma_S = 0$

$$\Gamma_L = +1 \Rightarrow V_+ = +V_- \text{. For } t \geq 2T = \frac{2l}{c}, v(z, t) = V_0, i(z, t) = 0$$
Figure 8-8 (a) A dc voltage V_0 is switched onto a resistively loaded transmission line through a source resistance R_S. (b) The equivalent circuits at $z = 0$ and $z = l$ allow us to calculate the reflected voltage wave amplitudes in terms of the incident waves.

Figure 8-9 (a) A dc voltage is switched onto a transmission line with load resistance R_L through a source resistance R_S matched to the line. (b) Regardless of the load resistance, half the source voltage propagates down the line towards the load. If the load is also matched to the line ($R_L = Z_0$), there are no reflections and the steady state of $V(z, t = T) = V_0/2$, $i(z, t = T) = Y_0 V_0/2$ is reached for $t \geq T$. (c) If the line is short circuited ($R_L = 0$), then $\Gamma_L = -1$ so that the V_+ and V_- waves cancel for the voltage but add for the current wherever they overlap in space. Since the source end is matched, no further reflections arise at $z = 0$ so that the steady state is reached for $t \geq 2T$. (d) If the line is open circuited ($R_L = \infty$) so that $\Gamma_L = +1$, the V_+ and V_- waves add for the voltage but cancel for the current.

3. Approach to the DC Steady State (neither end matched)

\[z = 0 : V_+(t) = \Gamma_0 V_0 + \Gamma_S V_-(t), \Gamma_0 = \frac{Z_0}{R_S + Z_0}, \Gamma_S = \frac{R_S - Z_0}{R_S + Z_0} \]

\[z = l : V_-(t + \frac{l}{c}) = \Gamma_L V_+(t - \frac{l}{c}), \Gamma_L = \frac{R_L - Z_0}{R_L + Z_0} \]

at \(z = l \):

\[V_{+n} = \Gamma_0 V_0 + \Gamma_S V_{-(n-1)} \]

\[V_{-(n-1)} = \Gamma_L V_{+(n-1)} \]

\[V_{+n} = \Gamma_0 V_0 + \Gamma_S \Gamma_L V_{+(n-1)} \Rightarrow V_{+n} - \Gamma_S \Gamma_L V_{+(n-1)} = \Gamma_0 V_0 \]

Particular Solution:

\[V_{+n} = \text{constant} \]

\[\text{constant} \left(1 - \Gamma_S \Gamma_L \right) = \Gamma_0 V_0 \]

\[\text{constant} = \frac{\Gamma_0 V_0}{1 - \Gamma_S \Gamma_L} \]

Homogeneous Solution:

\[V_{+n} - \Gamma_S \Gamma_L V_{+(n-1)} = 0 \]

Try a solution of the form: \(V_{+n} = A\lambda^n \)

\[A \left(\lambda^n - \Gamma_S \Gamma_L \lambda^{n-1} \right) = 0 \Rightarrow \lambda = \Gamma_S \Gamma_L \]

\[V_{+n} = \frac{\Gamma_0 V_0}{1 - \Gamma_S \Gamma_L} + A (\Gamma_S \Gamma_L)^n \]
Initial Condition:

\[V_{+1} = \Gamma_0 V_0 = \frac{\Gamma_0 V_0}{1 - \Gamma_S \Gamma_L} + A(\Gamma_S \Gamma_L) \Rightarrow A = -\frac{\Gamma_0 V_0}{1 - \Gamma_S \Gamma_L} \]

\[V_{+n} = \frac{\Gamma_0 V_0}{1 - \Gamma_S \Gamma_L} [1 - (\Gamma_S \Gamma_L)^n] \]

\[V_{-(n-1)} = \Gamma_L V_{+(n-1)} \Rightarrow V_{-n} = \Gamma_L V_{+n} \]

\[V_n = V_{+n} + V_{-n} = V_{+n}(1 + \Gamma_L) = \frac{V_0(1 + \Gamma_L) \Gamma_0 V_0}{1 - \Gamma_S \Gamma_L} [1 - (\Gamma_S \Gamma_L)^n] \]

\[\lim_{n \to \infty} V_n = \frac{R_L}{R_L + R_S} V_0 \]

\[
\begin{array}{lllllll}
\text{a.} & \text{Special Case: } & R_S = 0, & R_L = 3Z_0. \\
\Gamma_S = -1, & \Gamma_L = \frac{R_L - Z_0}{R_L + Z_0} = \frac{1}{3} = \frac{1}{2} \Rightarrow & \Gamma_S \Gamma_L = -\frac{1}{2}
\end{array}
\]

\[
z = t \quad V_n = V_0 \left[1 - \left(-\frac{1}{2} \right)^n \right] \quad I_n = \frac{V_0}{3Z_0} \left[1 - \left(-\frac{1}{2} \right)^n \right]
\]

\[
\begin{array}{lllllll}
\text{b.} & \text{Special Case: } & R_S = 0, & R_L = \frac{1}{3}Z_0
\end{array}
\]

\[
\Gamma_S = -1, \Gamma_L = \frac{R_L - Z_0}{R_L + Z_0} = -\frac{\frac{1}{2}}{\frac{3}{4}} = -\frac{1}{2} \Rightarrow \Gamma_S \Gamma_L = +\frac{1}{2}
\]

\[
z = l \quad \quad V_n = V_0 \left[1 - \left(\frac{1}{2} \right)^n \right]
\]

c. Special Case: \(R_S = 0, R_L = \infty \) (open circuit)

\[
\Gamma_S \Gamma_L = -1
\]

\[
V_n = \frac{R_L}{R_S + R_L} V_0 \left[1 - (\Gamma_S \Gamma_L)^n \right] = V_0 (1 - (-1)^n)
\]

\[
= \begin{cases}
0 & \text{n even} \\
2V_0 & \text{n odd}
\end{cases}
\]

d. Special Case: \(R_S = 0, R_L = 0 \) (short circuit)

\[
\Gamma_S \Gamma_L = +1
\]

\[
I_n = \frac{V_0}{R_L + R_S} \left[1 - (\Gamma_S \Gamma_L)^n \right] \quad \text{Indeterminate}
\]

\[
\Gamma_S = \frac{R_S - Z_0}{R_S + Z_0} = \frac{\frac{R_S}{Z_0} - 1}{\frac{R_S}{Z_0} + 1} \approx - \left(1 - \frac{R_S}{Z_0} \right)^2 \approx - \left(1 - 2 \frac{R_S}{Z_0} \right)
\]

\[
\Gamma_L = \frac{R_L - Z_0}{R_L + Z_0} \approx - \left(1 - \frac{2R_L}{Z_0} \right)
\]

\[
I_N = \frac{V_0}{R_L + R_S} \left[1 - \left(1 - \frac{2R_L}{Z_0} \right) \left(1 - \frac{2R_S}{Z_0} \right) \right]^n
\]

\[
\approx \frac{V_0}{R_L + R_S} \left[1 - \left(1 - \frac{2(R_L + R_S)}{Z_0} \right) \right]^n
\]

\[
\approx \frac{V_0}{R_L + R_S} \left[1 - 1 + \frac{2n(R_L + R_S)}{Z_0} \right]
\]

\[
\approx \frac{V_0 \cdot 2n}{Z_0}
\]

This approximates an inductor: \(V_0 = (LI) \frac{di}{dt} \Rightarrow i = \frac{V_0}{Li} t \)

e. Special Case: \(R_L = \infty \) (open circuit)

\[
\Gamma_L = 1 \Rightarrow V_n = V_0 [1 - \Gamma_S^n]
\]

This approximates the transmission line as a capacitor being charged through the resistor \(R_S \):

\[
v(t) = V_0 \left(1 - e^{-t/\tau} \right)
\]

\[
\tau = R_S C l
\]
Figure 8-11 The (a) open circuit voltage and (b) short circuit current at the $z=1$ end of the transmission line for $R_s = 0$. No dc steady state is reached because the system is lossless. If the short circuit transmission line is modeled as an inductor in the quasi-static limit, a step voltage input results in a linearly increasing current (shown dashed). The exact transmission line response is the solid staircase waveform.

Figure 8-12 The open circuit voltage at $z=1$ for a step voltage applied at $t=0$ through a source resistance R_s for various values of T/τ, which is the ratio of propagation time $T = l/c$ to quasi-static charging time $\tau = R_s C l$. The dashed curve shows the exponential rise obtained by a circuit analysis assuming the open circuited transmission line is a capacitor.

C. Reflections from Arbitrary Terminations

\[V_L(t) = V_0 [V_+(t - \frac{t}{c}) - V_-(t + \frac{t}{c})] \]

\[i_L(t) = \frac{V_0}{Z_0} [V_+(t - \frac{t}{c}) - V_-(t + \frac{t}{c})] \]

Figure 8-13 A transmission line with an \((a)\) arbitrary load at the \(z = l\) end can be analyzed from the equivalent circuit in \((b)\). Since \(V_+\) is known, calculation of the load current or voltage yields the reflected wave \(V_-\).

1. Capacitor \(C_L\) at \(z = l\), \(R_S = Z_0\) \(\Rightarrow V_+ = \frac{V_0}{2}\)

\[
t > T \quad V_L(t) = v_c(t), I_L(t) = C_L \frac{dv_c}{dt} \]

\[
Z_0 C_L \frac{dv_c}{dt} + v_c = 2V_+ = V_0, t > T
\]

\[
v_c(t) = \frac{V_0}{2} \left[1 - e^{-\left(t - T \right)/\left(Z_0 C_L \right)} \right], t > T
\]

\[
T = \frac{l}{c}
\]

\[
V_- = v_c(t) - V_+
\]

\[
= -\frac{V_0}{2} + V_0 \left[1 - e^{-\left(t - T \right)/\left(Z_0 C_L \right)} \right]
\]

\[
= \frac{V_0}{2} - V_0 e^{-\left(t - T \right)/\left(Z_0 C_L \right)}
\]

\[
i_c = C_L \frac{dv_c}{dt} = \frac{V_0}{Z_0} e^{-\left(t - T \right)/\left(Z_0 C_L \right)}, t > T
\]

2. Inductor \(L_L\) at \(z = l\)

\[
L_L \frac{di_L}{dt} + i_L Z_0 = 2V_+ = V_0, t > T
\]

\[
i_L = \frac{V_0}{Z_0} \left[1 - e^{-\left(t - T \right) Z_0 / L_L} \right], t > T
\]

\[
v_L = L_L \frac{di_L}{dt} = V_0 e^{-\left(t - T \right) Z_0 / L_L}, t > T
\]
Figure 8-14 (a) A step voltage is applied to transmission lines loaded at $z = l$ with a capacitor C_L or inductor L_L. The load voltage and current are calculated from the (b) resistive-capacitive or (c) resistive-inductive equivalent circuits at $z = l$ to yield exponential waveforms with respective time constants $\tau = Z_0 C_L$ and $\tau = L_L / Z_0$ as the solutions approach the dc steady state. The waveforms begin after the initial V_i wave arrives at $z = l$ after a time $T = \lambda/c$. There are no further reflections as the source end is matched.