6.01 Midterm 1: Fall 2009

Enter all answers in the boxes provided.

During the exam you may:

- read any paper that you want to
- use a laptop, but only to READ course material

You may not

- search the web generally
- run Idle or Python
- talk, chat or email or otherwise converse with another person
- use a music player

Because of this midterm, we will not have software labs this week. Instead, we will provide lectures on control systems during your software lab time slot:

<table>
<thead>
<tr>
<th>Section</th>
<th>Date</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>section 1</td>
<td>October 6</td>
<td>11:00am</td>
<td>26-100</td>
</tr>
<tr>
<td>section 2</td>
<td>October 6</td>
<td>2pm</td>
<td>34-101</td>
</tr>
</tbody>
</table>

For staff use:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/10</td>
</tr>
<tr>
<td>2</td>
<td>/20</td>
</tr>
<tr>
<td>3</td>
<td>/20</td>
</tr>
<tr>
<td>4</td>
<td>/10</td>
</tr>
<tr>
<td>5</td>
<td>/20</td>
</tr>
<tr>
<td>6</td>
<td>/20</td>
</tr>
<tr>
<td>total:</td>
<td>/100</td>
</tr>
</tbody>
</table>
1 OOP (10 points)

The following definitions have been entered into the Python shell:

```
class F:
    x = 0
    y = 10
    def __init__(self, y):
        self.x = y
    def a1(self, y):
        self.x = max(self.x, y)
        return self.x
    def a2(self):
        self.x = max(self.x, self.y)
        return self.x

class G(F):
    def b(self):
        self.y = self.x * self.x
        return self.y
```

Write the values of the following expressions (enter None when there is no value; write Error when an error results and explain briefly why it’s an error). Assume these expressions are evaluated one after the other (in each column).

<table>
<thead>
<tr>
<th>f = F(5)</th>
<th>g = G()</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Error: needs argument</td>
</tr>
<tr>
<td>f.a1(7)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>f.a1(3)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>f.b()</td>
<td></td>
</tr>
<tr>
<td>Error: no such method</td>
<td></td>
</tr>
<tr>
<td>f.a2()</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g = G()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>g = G(3)</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>g.a1(5)</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>g.b()</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>g.a2()</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>
2 Signals (20 points)

Given a signal x, we want to construct a signal y such that:

$$y[n] = a*x[n-1] + (1-a)*x[n-2]$$

for $0 \leq a \leq 1$.

Part a. Define a Signal subclass that represents this signal, given an instance of the Signal class representing x and the value of a. Construct the new signal, given a signal instance x, and a variable a, as follows:

$$y = \text{MySig}(x, a)$$

Do not use any of the existing Signal subclasses, such as Rn or PolyR.

```python
class MySig(sig.Signal):
    def __init__(self, x, a):
        self.x = x
        self.a = a
    def sample(self, n):
        return self.a*self.x.sample(n-1) + (1-self.a)*self.x.sample(n-2)
```

Part b. Given a signal instance x, and a variable a, write an expression involving sig.PolyR that constructs an equivalent signal. To construct a polynomial use poly.Polynomial.

$$\text{sig.PolyR}(x, \text{poly.Polynomial}([1-a, a, 0]))$$
Part c. Write a Python procedure settleTime that is given:

- \(s \): an instance of the Signal class;
- \(m \): an integer, representing the max index to look at;
- bounds: a tuple of two values (lo, hi).

It returns an integer or None. The integer corresponds to the smallest sample index (w) such that the sample at index w and all the samples from w up to m are between lo and hi (less than or equal to hi and greater or equal to lo). It returns None if no such sample exists.

```python
def settleTime(s, m, bounds):
    (lo, hi) = bounds
    def inBounds(x):
        return x >= lo and x <= hi
    w = 0
    for i in range(m):
        if not inBounds(s.sample(i)):
            w = i + 1
    if w == m:
        return None
    else:
        return w
```
3 State Machines (20 points)

Write a state machine whose inputs are the characters of a string of "words" separated by spaces. For each input character, the machine should:

- output the string 'x' if the character is within a word, or
- if the input character is a space, then
 - output the most recent word if the most recent word is a number (all numerical digits), or
 - output None if the most recent input word is empty or contains any non-digits.

Assume there is never more than one consecutive space. For example:

```python
>>> x = ' v1 11 1v '
>>> FindNumbers().transduce(x)
[None, 'x', 'x', None, 'x', 'x', '11', 'x', 'x', None]
```

Do not add any instance attributes to the state machines.

If foo is a single-character or multi-character string, the Python method foo.isdigit() returns True if there is at least one character in foo and all of the characters in foo are all digits.

```python
class FindNumbers(sm.SM):
    startState = ''
    def getNextValues(self, state, inp):
        if inp == ' ':
            if state.isdigit():
                return ('', state)
            else:
                return ('', None)
        else:
            return (state+inp, 'x')
```
4 Difference Equations (10 points)

Newton’s law of cooling states that:

The change in an object’s temperature from one time step to the next is proportional to the difference (on the earlier step) between the temperature of the object and the temperature of the environment, as well as to the length of the time step.

Let

- \(o[n] \) be temperature of object
- \(s[n] \) be temperature of environment
- \(T \) be the duration of a time step
- \(K \) be the constant of proportionality

Part a. Write a difference equation for Newton’s law of cooling. Be sure the signs are such that the temperature of the object will eventually equilibrate with that of the environment.

\[
o[n] = o[n - 1] + TK(s[n - 1] - o[n - 1])
\]

Part b. Write the system function corresponding to this equation (show your work):

\[
H = \frac{O}{S} = \frac{KTR}{1 - (1 - KT)R}
\]
5 Signals and Systems (20 points)
Consider the following system:

Part a. Write the system function:

\[H = \frac{Y}{X} = \frac{k_1 k_2 R}{1 + k_2 R^2 (1 + k_1)} \]

Part b.
Let \(k_1 = 1 \) and \(k_2 = -2 \). Assume that the system starts “at rest” (all signals are zero) and that the input signal \(X \) is the unit sample signal. Determine \(y[0] \) through \(y[3] \).

\[
\begin{align*}
\ y[0] &= 0 \\
\ y[1] &= -2 \\
\ y[2] &= 0 \\
\ y[3] &= -8
\end{align*}
\]

Part c. Let \(k_1 = 1 \) and \(k_2 = -2 \), determine the poles of \(H \).

Enter poles or none if there are no poles: \(2, -2 \)
Part d. For each of the systems below indicate whether the system is equivalent to this one: (Remember that there can be multiple “equivalent” representations for a system.) If you write clearly the system function for these systems, we may be able to give you partial credit.

Equivalent to \(H \) (yes/no)?

No

Equivalent to \(H \) (yes/no)?

Yes
Equivalent to H (yes/no)? Yes

Equivalent to H (yes/no)? No
6 System Behaviors (20 points)

Part a. Find the poles for the following system functions:

\[H_1(\mathcal{R}) = \frac{1}{1 - \mathcal{R} + 0.5\mathcal{R}^2} \]

Poles: 0.5 ± 0.5j

\[H_2(\mathcal{R}) = \frac{1}{1 - 0.4\mathcal{R} - 0.05\mathcal{R}^2} \]

Poles: 0.5, −0.1
Consider the following poles:

```python
>>> H1.poles() = [-1.0, -0.5]
>>> H2.poles() = [(0.375+0.330j), (0.375-0.330j)]
>>> H3.poles() = [(0.05+0.234j), (0.05-0.234j)]
>>> H4.poles() = [1.2, -0.5]
```

Part b. Deleted

Part c. Which (if any) of the poles lead to the following unit sample response?

Circle all correct answers(s): H_1 H_2 H_3 H_4 none
Part d. Which (if any) of the poles lead to the following unit sample response?

Circle all correct answers(s): H_1 H_2 H_3 H_4 none

Part e. Which (if any) of the poles lead to convergent unit-sample responses?

Circle all correct answers(s): H_1 H_2 H_3 H_4 none