Problem Wk.2.3.4: Introduction to Recursion

Part 1: Add

In a recursive procedure definition we have one or more base cases and one or more recursive cases. Base cases terminate the recursion and return a value without calling the recursive procedure again. Recursive cases call the procedure again, but with an argument that is getting smaller, in some sense.

Here is a recursive definition of addition, using only the operation of adding and subtracting 1. Supply the base case (when \(b \) is zero) by replacing the underscores with the appropriate Python expressions.

```python
def add(a, b):
    if  
        return 
    else:
        return add(a, b-1) + 1
```

Part 2: Execution

Consider the `add` procedure above.

1. What conditions must be true of \(a \) and \(b \) for the procedure to terminate? Options:
 - \(a \) and \(b \) can be any number
 - \(a \) can be any number and \(b \) must be an integer
 - \(a \) must be an integer and \(b \) can be any number
 - \(a \) can be any number and \(b \) must be a non-negative integer
 - \(a \) must be a non-negative integer and \(b \) can be any number
 - \(a \) and \(b \) must be integers
 - \(a \) and \(b \) must be non-negative integers
 - \(a \) must be an integer and \(b \) must be a non-negative integer
 - \(a \) must be a non-negative integer and \(b \) must be an integer

2. In order to compute \(\text{add}(5, 2) \), what recursive calls are made to \(\text{add} \) (in sequence)? Enter the values of \(a \) and \(b \) and enter None if there are too many entries.

\(\text{add}(5, 2) \)

\(\text{add}(\underline{\quad}, \underline{\quad}) \)

\(\text{add}(\underline{\quad}, \underline{\quad}) \)
Part 3: Sub

Here is a recursive definition of subtraction, using only the operation of adding and subtracting 1. Supply the recursive case by replacing the underscores with the appropriate Python expressions.

def sub(a, b):
 if b == 0:
 return a
 else:
 return _____