Problem Wk.3.3.3: Finding systems

A difference equation is in the form:

\[y[n] = c_0 y[n-1] + c_1 y[n-2] + \ldots + c_k y[n-k] + d_0 x[n] + d_1 x[n-1] + \ldots + d_j x[n-j] \]

Determine the difference equation representation for the following systems.

Specify the \(d\text{Coeffs} \): \(d_0 \ldots d_j \) and the \(c\text{Coeffs} \): \(c_0 \ldots c_{k-1} \) for each of the difference equations below. For each question, enter a sequence of numbers representing the coefficients.

If one set of coefficients is empty, enter \text{none}, otherwise enter a sequence of numbers separated by spaces (no commas, parens, brackets, etc).

1. Let \(x[n] \) be an input sequence of digitized sound. We want to output a sound sequence \(y[n] \) where every output sample is the average of the previous two input samples, that is, \(n-1, \, n-2 \). Don't worry about what happens on the first few samples.

\[\text{Difference equation:} \]
\[d\text{Coeffs (input)}: \quad \]
\[c\text{Coeffs (output)}: \quad \]

2. Assume that the input to a system is 0 for \(n < 0 \) and 1 for \(n \geq 0 \). The output is 0 for \(n < 0 \) and is equal to the sequence 10, 1, 1, 1, 1, \ldots \ for \(n \geq 0 \). Hint: the answer has no \(c\text{Coeffs} \).

\[\text{Difference equation:} \]
\[d\text{Coeffs (input)}: \quad \]
\[c\text{Coeffs (output)}: \quad \]

3. A Bank offers a 5% annual interest rate, the inputs are your deposits, and the output is the balance in your account. Let \(x[n] \) represent the amount of money you deposit in the bank during year \(n \) and \(y[n] \) represent your balance in the bank at the end of year \(n \). Assume that deposits during year \(n \) are credited to the balance in year \(n \) but earn no interest until year \(n + 1 \).

\[\text{Difference equation:} \]
\[d\text{Coeffs (input)}: \quad \]
\[c\text{Coeffs (output)}: \quad \]

4. Assume that you deposit $100 in the Bank in the year 2007 (\(n=0 \)) and make no further deposits. Solve your difference equation numerically to determine your balance in the bank during years 0 through 25. Hint: All this requires is a very simple Python program.

What is your bank balance in the year 2011 (\(n=4 \))?
What is your bank balance in the year 2031 (\(n=24 \))?
