Search Algorithms
Nano-Quiz Makeups

Wednesday, May 4, 6-11pm, 34-501.

– everyone can makeup/retake NQ 1
– everyone can makeup/retake two additional NQs
– you can makeup/retake other NQs excused by S˘3

If you makeup/retake a NQ, the new score will replace the old score, even if the new score is lower!
Module 4: Probability and Planning

Modeling uncertainty and making robust plans.

Topics: Bayes’ theorem, search strategies

Lab exercises:
- Mapping: drive robot around unknown space and make map.
- Localization: give robot map and ask it to find where it is.
- Planning: plot a route to a goal in a maze

Themes: Robust design in the face of uncertainty
Last Time: Probability

Modeling uncertainty and making robust plans.

Topics: Bayes’ theorem, search strategies

Lab exercises:

• Mapping: drive robot around unknown space and make map.
• Localization: give robot map and ask it to find where it is.
• Planning: plot a route to a goal in a maze

Themes: Robust design in the face of uncertainty
Design Lab 12: One-Dimensional Localizer

As robot drives along hallway with obstacles to its side, estimate its current position based on previous estimates and sonar information.

State S_t: discretized values of distance along the hallway (x).

Transition model $Pr(S_{t+1} = s' \mid S_t = s)$: conditional distribution of next state given current state.

Observation model $Pr(O_t = d \mid S_t = s)$: conditional distribution of left-facing sonar readings (y) given state.
Today: Search Strategies

Modeling uncertainty and making robust plans.

Topics: Bayes’ theorem, search strategies

Lab exercises:

- Mapping: drive robot around unknown space and make map.
- Localization: give robot map and ask it to find where it is.
- Planning: plot a route to a goal in a maze

We will plan a route by searching through possible alternatives.
Planning

Make a plan by searching.

Example: Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

```
1 2 3
4 5
7 8 6
```
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2
7 4 3
8 6 5
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2
6 3
7 8 5
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

```
1 4 2
6 3
7 8 5
```
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.
Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

Twenty-two moves.

How difficult is this problem?
Check Yourself

How many different board configurations (states) exist?

1. $8^2 = 64$
2. $9^2 = 81$
3. $8! = 40320$
4. $9! = 362880$
5. none of the above
Check Yourself

How many different board configurations (states) exist?

Nine possibilities for the first square.
Eight possibilities for the second square.
Seven possibilities for the third square.

...

\[9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 9! \]
Check Yourself

How many different board configurations (states) exist? 4

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. $8^2 = 64$
2. $9^2 = 81$
3. $8! = 40320$
4. $9! = 362880$
5. none of the above
Eight Puzzle

We have to search through as many as $9! = 362,880$ configurations (more if we get confused and lose track of what we are doing)!

Is the solution with 22 moves optimal? Do shorter solutions exist? Do we have to look at all 362,880 configurations to be sure?
Search Algorithm

Develop an algorithm to systematically conduct a search.

Analyze how well the algorithm performs.

Optimize the algorithm:

- find the “best” solution (i.e., minimum path length)
- by considering as few cases as possible.
Algorithm Overview: Example

Find minimum distance path between 2 points on a rectangular grid.

A B C
D E F
G H I
Algorithm Overview

Find minimum distance path between 2 points on a rectangular grid.

![Grid Diagram]

Represent all possible paths with a tree (shown to just length 3).

![Tree Diagram]

Find the shortest path from A to I.
Algorithm Overview

The tree could be infinite.

Therefore, we will construct the tree and search at the same time.
Python Representation

Represent possible locations by states: 'A', 'B', 'C', 'D', ..., 'I'.

Represent possible transitions with successor procedure
- inputs: current state (location) and action (e.g., up, right, ...)
- output: new state

Define initialState (starting location)

Determine if goal has been achieved with goalTest procedure
- input: state
- output: True if state achieves goal, False otherwise.
successors = {
 'A': ['B', 'D'],
 'B': ['A', 'C', 'E'],
 'C': ['B', 'F'],
 'D': ['A', 'E', 'G'],
 'E': ['B', 'D', 'F', 'H'],
 'F': ['C', 'E', 'I'],
 'G': ['D', 'H'],
 'H': ['E', 'G', 'I'],
 'I': ['F', 'H']
}

actions = [0, 1, 2, 3]

def successor(s, a):
 if a < len(successors[s]):
 return successors[s][a]
 else:
 return s

initialState = 'A'

def goalTest(s):
 return s == 'I'

Represent each **node** in the tree as an instance of class **SearchNode**.

class SearchNode:
 def __init__(self, action, state, parent):
 self.action = action
 self.state = state
 self.parent = parent
 def path(self):
 if self.parent == None:
 return [(self.action, self.state)]
 else:
 return self.parent.path()+
 [(self.action,self.state)]
Search Algorithm

Construct the tree and find the shortest path to the goal.

Algorithm:
• initialize **agenda** (list of nodes being considered) to contain starting node
• repeat the following steps:
 – remove one node from the agenda
 – add that node’s children to the agenda
until **goal is found** or **agenda is empty**
• return resulting path
Search Algorithm in Python

Define the **search** procedure.

```python
def search(initialState, goalTest, actions, successor):
```
Search Algorithm in Python

Initialize the *agenda*.

```python
def search(initialState, goalTest, actions, successor):
    if goalTest(initialState):
        return [(None, initialState)]
    agenda = [SearchNode(None, initialState, None)]
```
Search Algorithm in Python

Repeatedly (1) **remove** node (parent) from agenda and (2) **add**
parent’s children until goal is reached or agenda is empty.

```python
def search(initialState, goalTest, actions, successor):
    if goalTest(initialState):
        return [(None, initialState)]
    agenda = [SearchNode(None, initialState, None)]
    while not empty(agenda):
        parent = getElement(agenda)
        for a in actions:
            newS = successor(parent.state, a)
            newN = SearchNode(a, newS, parent)
            if goalTest(newS):
                return newN.path()
            else:
                add(newN, agenda)
    return None
```
Replace first node in agenda by its children:

- Step 0: Agenda
 - 0: A

- Step 1: Agenda
 - 0: A
 - 1: AB AD

- Step 2: Agenda
 - 0: A
 - 1: ABA ABC ABE AD

- Step 3: Agenda
 - 0: A
 - 1: ABAB ABAD ABC ABE AD
Order Matters

Replace first node in agenda by its children:

```
step  Agenda
0:    A
1:    AB AB
2:    ABA ABC ABE AD
3:    ABAB ABAD ABC ABE AD
```
Replace first node in agenda by its children:

- **A**
- **B**: **A**
- **C**: **B**
- **D**: **A**
- **E**: **B**
- **F**: **D**
- **H**: **B**
- **G**: **A**
- **B**: **D**
- **D**: **F**
- **H**: **D**

Step Agenda

0: **A**
1: **AB AD**
2: **ABA ABC ABE AD**
3: **ABAB ABAD ABC ABE AD**
Order Matters

Replace first node in agenda by its children:

step Agenda
0: A
1: AB AD
2: ABA ABC ABE AD
3: ABAB ABAD ABC ABE AD
Order Matters

Replace first node in agenda by its children:

step Agenda
0: A
1: AB AD
2: ABA ABC ABE AD
3: ABAB ABAD ABC ABE AD
Order Matters

Replace first node in agenda by its children:

```
0 1
0 1
0 1
2
3
0 1
2
0 1
2
0 1
B
D
A
B
F
C
B
B
D
F
H
E
B
D
A
B
D
F
H
E
D
A
D
H
G
```
Order Matters

Replace last node in agenda by its children:

step Agenda
0: A
1: AB AD
2: AB ADA ADE ADG
3: AB ADA ADE ADGD ADGH
Replace last node in agenda by its children:

```
step    Agenda
0:      A
1:      AB  AD
2:      AB  ADA  ADE  ADG
3:      AB  ADA  ADE  ADGD  ADGH
```
Order Matters

Replace last node in agenda by its children:

step Agenda
0: A
1: AB AD
2: AB ADA ADE ADG
3: AB ADA ADE ADGD ADGH
Order Matters

Replace last node in agenda by its children:

```
step  Agenda
  0:   A
  1:   AB  AD
  2:   AB  ADA  ADE  ADG
  3:   AB  ADA  ADE  ADGD  ADGH
```
Replace last node in agenda by its children:

Step Agenda
0: A
1: AB AD
2: AB ADA ADE ADG
3: AB ADA ADE ADGD ADGH
Order Matters

Replace last node in agenda by its children:

step Agenda
0: A
1: AB AD
2: AB ADA ADE ADG
3: AB ADA ADE ADGD ADGH

also Depth First Search
Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
0: A
1: AB AD
2: AD ABA ABC ABE
3: ABA ABC ABE ADA ADE ADG
Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
0: A
1: AB AD
2: AD ABA ABC ABE
3: ABA ABC ABE ADA ADE ADG
Order Matters

Remove first node from agenda. Add its children to end of agenda.

step	Agenda
0: | A
1: | AB AD
2: | AD ABA ABC ABE
3: | ABA ABC ABE ADA ADE ADG
Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
0: A
1: AB AD
2: AD ABA ABC ABE
3: ABA ABC ABE ADA ADE ADG
Remove first node from agenda. Add its children to end of agenda.

step	Agenda
0: | A
1: | AB AD
2: | AD ABA ABC ABE
3: | ABA ABC ABE ADA ADE ADG
Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
1: AB AD
2: AD ABA ABC ABE
3: ABA ABC ABE ADA ADE ADG
4: ABC ABE ADA ADE ADG ABAB ABAD
Order Matters

Remove first node from agenda. Add its children to end of agenda.

step	Agenda
2: | AD ABA ABC ABE
3: | ABA ABC ABE ADA ADE ADG
4: | ABC ABE ADA ADE ADG ABAB ABAD
5: | ABE ADA ADE ADG ABAB ABAD ABCB ABCF
Order Matters

Remove first node from agenda. Add its children to end of agenda.

```
step  Agenda
3:     ABA ABC ABE ADA ADE ADG
4:     ABC ABE ADA ADE ADG ABAB ABAD
5:     ABE ADA ADE ADG ABAB ABAD ABCB ABCF
6:     ADA ADE ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH
```
Order Matters

Remove first node from agenda. Add its children to end of agenda.

step	Agenda
5: | ABE ADA ADE ADG ABAB ABAD ABCB ABCF
6: | ADA ADE ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH
7: | ADE ADG ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH ADAB ADAD
Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda
7: ADE ADG ABAB ABAD ABCB ABCF ABEB ABED
 ABEF ABEH ADAB ADAD
8: ADG ABAB ABAD ABCB ABCF ABEB ABED
 ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH
Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda

8: ADG ABAB ABAD ABCB ABCF ABEB ABED
 ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH

9: ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH
 ADAB ADAD ADEB ADED ADEF ADEH ADGD ADGH
Order Matters

Remove first node from agenda. Add its children to end of agenda.

Breadth First Search
Order Matters

Replace last node by its children (depth-first search):
- implement with stack (last-in, first-out).

Remove first node from agenda. Add its children to the end of the agenda (breadth-first search):
- implement with queue (first-in, first-out).
Stack

Last in, first out.

```python
>>> s = Stack()
>>> s.push(1)
>>> s.push(9)
>>> s.push(3)
>>> s.pop()
3
>>> s.pop()
9
>>> s.push(-2)
>>> s.pop()
-2
```
Stack Class

Last in, first out.

class Stack:
 def __init__(self):
 self.data = []
 def push(self, item):
 self.data.append(item)
 def pop(self):
 return self.data.pop()
 def empty(self):
 return self.data is []
First in, first out.

```python
>>> q = Queue()
>>> q.push(1)
>>> q.push(9)
>>> q.push(3)
>>> q.pop()
1
>>> q.pop()
9
>>> q.push(-2)
>>> q.pop()
3
```
First in, first out.

class Queue:
 def __init__(self):
 self.data = []
 def push(self, item):
 self.data.append(item)
 def pop(self):
 return self.data.pop(0) #NOTE: different argument
 def empty(self):
 return self.data is []
Replace `getElement`, `add`, and `empty` with `stack` commands.

def search(initialState, goalTest, actions, successor):
 agenda = Stack()
 if goalTest(initialState):
 return [(None, initialState)]
 agenda.push(SearchNode(None, initialState, None))
 while not agenda.empty():
 parent = agenda.pop()
 for a in actions:
 newS = successor(parent.state, a)
 newN = SearchNode(a, newS, parent)
 if goalTest(newS):
 return newN.path()
 else:
 agenda.push(newN)

return None
Breadth-First Search

Replace `getElement`, `add`, and `empty` with `queue` commands.

def search(initialState, goalTest, actions, successor):
 agenda = Queue()
 if goalTest(initialState):
 return [(None, initialState)]
 agenda.push(SearchNode(None, initialState, None))
 while not agenda.empty():
 parent = agenda.pop()
 for a in actions:
 newS = successor(parent.state, a)
 newN = SearchNode(a, newS, parent)
 if goalTest(newS):
 return newN.path()
 else:
 agenda.push(newN)
 return None
Too Much Searching

Find minimum distance path between 2 points on a rectangular grid.

Represent all possible paths with a tree (shown to just length 3).

Not all of the nodes of this tree must be searched!
Check Yourself

How many of these terminal nodes can be ignored?

1. 0
2. 2
3. 4
4. 6
5. 8
Check Yourself

The red states represent returns to a previously visited state.

We only need to consider paths that do not revisit states.
Check Yourself

How many of these terminal nodes can be ignored? 5

1. 0 2. 2 3. 4 4. 6 5. 8
Pruning

Prune the tree to reduce the amount of work.

Pruning Rule 1:
Don’t consider any path that visits the same state twice.
Pruning

Prune the tree to reduce the amount of work.

Pruning Rule 1:
Don’t consider any path that visits the same state twice.
Pruning Rule 1

Implementation (depth first, switch to Queue for breadth first)

def search(initialState, goalTest, actions, successor):
 agenda = Stack()
 if goalTest(initialState):
 return [(None, initialState)]
 agenda.push(SearchNode(None, initialState, None))
 while not agenda.empty():
 parent = agenda.pop()
 for a in actions:
 newS = successor(parent.state, a)
 newN = SearchNode(a, newS, parent)
 if goalTest(newS):
 return newN.path()
 elif parent.inPath(newS): # pruning rule 1
 pass
 else:
 agenda.push(newN)
 return None
Pruning Rule 1

Add **inPath** to SearchNode.

class SearchNode:
 def __init__(self, action, state, parent):
 self.action = action
 self.state = state
 self.parent = parent
 def path(self):
 if self.parent == None:
 return [(self.action, self.state)]
 else:
 return self.parent.path() + [(self.action, self.state)]
 def inPath(self, state):
 if self.state == state:
 return True
 elif self.parent == None:
 return False
 else:
 return self.parent.inPath(state)
Pruning

Prune the tree to reduce the amount of work.

Pruning Rule 2:
If multiple actions lead to the same state, consider only one of them.
Pruning Rule 2

```python
def search(initialState, goalTest, actions, successor):
    agenda = Stack()
    if goalTest(initialState):
        return [(None, initialState)]
    agenda.push(SearchNode(None, initialState, None))
    while not agenda.empty():
        parent = agenda.pop()
        newChildStates = []
        for a in actions:
            newS = successor(parent.state, a)
            newN = SearchNode(a, newS, parent)
            if goalTest(newS):
                return newN.path()
            elif newS in newChildStates:  # pruning rule 2
                pass
            elif parent.inPath(newS):    # pruning rule 1
                pass
            else:
                newChildStates.append(newS)
                agenda.push(newN)
    return None
```
Depth-First Search Example
Depth-First Search Transcript

<table>
<thead>
<tr>
<th>Agenda</th>
<th>Stack</th>
<th>Expanding</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>Stack([A])</td>
<td>A -> AB, AD</td>
<td>1 +2</td>
</tr>
<tr>
<td>[AB, AD]</td>
<td>Stack([AB, AD])</td>
<td>AD -> ABE, ADG</td>
<td>2 +2</td>
</tr>
<tr>
<td>[AB, ADE, ADG]</td>
<td>Stack([AB, ADE, ADG])</td>
<td>ADG -> ADGH</td>
<td>3 +1</td>
</tr>
<tr>
<td>[AB, ADE, ADGH]</td>
<td>Stack([AB, ADE, ADGH])</td>
<td>ADGH -> ADGHE</td>
<td>4 +1</td>
</tr>
</tbody>
</table>

states visited = 7
Depth-First Search Properties

• May run forever if we don’t apply pruning rule 1.
• May run forever in an infinite domain.
• Doesn’t necessarily find the shortest path.
• Efficient in the amount of space it requires to store the agenda.
Breadth-First Search

def search(initialState, goalTest, actions, successor):
 agenda = Queue()
 if goalTest(initialState):
 return [(None, initialState)]
 agenda.push(SearchNode(None, initialState, None))
 while not agenda.empty():
 parent = agenda.pop()
 newChildStates = []
 for a in actions:
 newS = successor(parent.state, a)
 newN = SearchNode(a, newS, parent)
 if goalTest(newS):
 return newN.path()
 elif newS in newChildStates: # pruning rule 2
 pass
 elif parent.inPath(newS): # pruning rule 1
 pass
 else:
 newChildStates.append(newS)
 agenda.push(newN)
 return None
Breadth-First Search Example

A

B

C

D

E

F

G

H

I
Breadth-First Search Transcript

agenda: Queue([A])
expanding: A -> AB, AD

agenda: Queue([AB, AD])
expanding: AB -> ABC, ABE

agenda: Queue([AD, ABC, ABE])
expanding: AD -> ADE, ADG

agenda: Queue([ABC, ABE, ADE, ADG])
expanding: ABC -> ABCF

agenda: Queue([ABE, ADE, ADG, ABCF])
expanding: ABE -> ABED, ABEF, ABEH

agenda: Queue([ADE, ADG, ABCF, ABED, ABEF, ABEH])
expanding: ADE -> ADEB, ADEF, ADEH

agenda: Queue([ADG, ABCF, ABED, ABEF, ABEH, ADEB, ADEF, ADEH])
expanding: ADG -> ADGH

agenda: Queue([ABCF, ABED, ABEF, ABEH, ADEB, ADEF, ADEH, ADGH])
expanding: ABCF -> ABCFE

[(None, 'A'), (0, 'B'), (1, 'C'), (1, 'F'), (2, 'I')]

states visited = 16
Breadth-First Search Properties

- Always returns a shortest path to a goal state, if a goal state exists in the set of states reachable from the start state.
- May run forever in an infinite domain if there is no solution.
- Requires more space than depth-first search.
Still Too Much Searching

Breadth-first search, visited 16 nodes: but there are only 9 states!

We should be able to reduce the search even further.
Dynamic Programming Principle

The shortest path from X to Z that goes through Y is made up of

- the shortest path from X to Y and
- the shortest path from Y to Z.

We only need to remember the shortest path from the start state to each other state!
Dynamic Programming in Breadth-First Search

The \textit{first} path that BFS finds from start to X is the \textit{shortest} path from start to X.

We only need to remember the \textit{first} path we find from the start state to each other state.
Dynamic Programming as a Pruning Technique

Don’t consider any path that visits a state that you have already visited via some other path.

Need to remember the first path we find to each state.

Use dictionary called **visited**
Breadth-First Search with Dynamic Programming

def breadthFirstDP(initialState, goalTest, actions, successor):
 agenda = Queue()
 if goalTest(initialState):
 return [(None, initialState)]
 agenda.push(SearchNode(None, initialState, None))
 visited = {initialState: True}
 while not agenda.empty():
 parent = agenda.pop()
 for a in actions:
 newS = successor(parent.state, a)
 newN = SearchNode(a, newS, parent)
 if goalTest(newS):
 return newN.path()
 elif visited.has_key(newS): # rules 1, 2, 3
 pass
 else:
 visited[newS] = True
 agenda.push(newN)
 return None
agenda: Queue([A]) visited: A 1
 expanding: A -> AB, AD +2
agenda: Queue([AB, AD]) visited: A, B, D
 expanding: AB -> ABC, ABE
agenda: Queue([AD, ABC, ABE]) visited: A, B, C, D, E
 expanding: AD -> ADG +1
agenda: Queue([ABC, ABE, ADG]) visited A, B, C, D, E, G
 expanding: ABC -> ABCF +1
agenda: Queue([ABE, ADG, ABCF]) visited A, B, C, D, E, F, G
 expanding: ABE -> ABEH +1
agenda: Queue([ADG, ABCF, ABEH]) visited A, B, C, D, E, F, G, H
 expanding: ADG -> x
agenda: Queue([ABCF, ABEH])
 expanding: ABCF -> x
[(None, 'A'), (0, 'B'), (1, 'C'), (1, 'F'), (2, 'I')]

states visited = 8
Summary

Developed two search algorithms
– depth-first search
– breadth-first search

Developed three pruning rules
– don’t consider any path that visits the same state twice
– if multiple actions lead to same state, only consider one of them
– dynamic programming: only consider the first path to a given state

– everyone can makeup/retake NQ 1
– everyone can makeup/retake two additional NQs
– you can makeup/retake other NQs excused by S^3

If you makeup/retake a NQ, the new score will replace the old score, even if the new score is lower!