Spectral content via the DTFT
Demo: “Deconvolving” Output of Channel with Echo

Suppose channel is LTI with

\[h_1[n] = \delta[n] + 0.8\delta[n-1] \]

\[H_1(\Omega) = \sum_{m} h_1[m]e^{-j\Omega m} \]

= 1 + 0.8e^{-j\Omega} = 1 + 0.8\cos(\Omega) – j0.8\sin(\Omega)

So:

\[|H_1(\Omega)| = [1.64 + 1.6\cos(\Omega)]^{1/2} \quad \text{EVEN function of } \Omega; \]

\[<H_1(\Omega) = \arctan \left[-(0.8\sin(\Omega)) / [1 + 0.8\cos(\Omega)] \right] \quad \text{ODD} . \]
A Frequency-Domain view of Deconvolution

Given $H_1(\Omega)$, what should $H_2(\Omega)$ be, to get $z[n]=x[n]$?

$H_2(\Omega)=1/H_1(\Omega)$ "Inverse filter"

$= (1/|H_1(\Omega)|). \exp\{-j<\Omega\}$

Inverse filter at receiver does very badly in the presence of noise that adds to $y[n]$: filter has high gain for noise precisely at frequencies where channel gain $|H_1(\Omega)|$ is low (and channel output is weak)!
DT Fourier Transform (DTFT) for Spectral Representation of General $x[n]$

If we can write

$$h[n] = \frac{1}{2\pi} \int_{-2\pi}^{2\pi} H(\Omega) e^{j\Omega n} \, d\Omega$$

then we can write

$$x[n] = \frac{1}{2\pi} \int_{-2\pi}^{2\pi} X(\Omega) e^{j\Omega n} \, d\Omega$$

where

$$H(\Omega) = \sum_{m} h[m] e^{-j\Omega m}$$

$$X(\Omega) = \sum_{m} x[m] e^{-j\Omega m}$$

Any contiguous interval of length 2π

This Fourier representation expresses $x[n]$ as a weighted combination of $e^{j\Omega n}$ for all Ω in $[-\pi, \pi]$.

$X(\Omega_o) d\Omega$ is the spectral content of $x[n]$ in the frequency interval $[\Omega_o, \Omega_o + d\Omega]$.
The spectrum of the exponential signal \((0.5)^n u[n]\) is shown over the frequency range \(\Omega = 2\pi f\) in \([-4\pi,4\pi]\), The angle has units of degrees.
$x[n]$ and $X(\Omega)$
Input/Output Behavior of LTI System in Frequency Domain

\[x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega \]

\[H(\Omega) \]

\[y[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\Omega) X(\Omega) e^{j\Omega n} d\Omega \]

\[Y(\Omega) = H(\Omega) X(\Omega) \]

Compare with \(y[n] = (h * x)[n] \)

Again, convolution in time has mapped to multiplication in frequency
Magnitude and Angle

\[Y(\Omega) = H(\Omega)X(\Omega) \]

\[|Y(\Omega)| = |H(\Omega)| \cdot |X(\Omega)| \]

and

\[<Y(\Omega) = <H(\Omega) + <X(\Omega) \]
Core of the Story

1. A huge class of DT and CT signals can be written --- using Fourier transforms --- as a weighted sums of sinusoids (ranging from very slow to very fast) or (equivalently, but more compactly) complex exponentials. The sums can be discrete \sum or continuous \int (or both).

2. LTI systems act very simply on sums of sinusoids: superposition of responses to each sinusoid, with the frequency response determining the frequency-dependent scaling of magnitude, shifting in phase.
Loudspeaker Bandpass Frequency Response

SPL versus Frequency

(Speaker Sensitivity = 85dB)

-3dB @ 56.5Hz
-3dB @ 12.5k Hz

Image by MIT OpenCourseWare.
Spectral Content of Various Sounds

- Human Voice
- Cymbal Crash
- Snare Drum
- Bass Drum
- Guitar
- Bass Guitar
- Synthesizer
- Piano

<table>
<thead>
<tr>
<th></th>
<th>13.75 Hz-27.5 Hz</th>
<th>27.5 Hz-55 Hz</th>
<th>55 Hz-110 Hz</th>
<th>110 Hz-220 Hz</th>
<th>220 Hz-440 Hz</th>
<th>440 Hz-880 Hz</th>
<th>880 Hz-1,760 Hz</th>
<th>1,760 Hz-3,520 Hz</th>
<th>3,520 Hz-7,040 Hz</th>
<th>7,040 Hz-14,080 Hz</th>
<th>14,080 Hz-28,160 Hz</th>
</tr>
</thead>
</table>

Image by MIT OpenCourseWare.
Connection between CT and DT

The continuous-time (CT) signal

\[x(t) = \cos(\omega t) = \cos(2\pi ft) \]

sampled every \(T \) seconds, i.e., at a sampling frequency of \(f_s = 1/T \), gives rise to the discrete-time (DT) signal

\[x[n] = x(nT) = \cos(\omega nT) = \cos(\Omega n) \]

So \(\Omega = \omega T \)

and \(\Omega = \pi \) corresponds to \(\omega = \pi/T \) or \(f = 1/(2T) = f_s/2 \)
Signal $x[n]$ that has its frequency content uniformly distributed in $[-\Omega_c, \Omega_c]$

$$x[n] = \frac{1}{2\pi} \int_{<2\pi>} X(\Omega) e^{j\Omega n} d\Omega$$

$$= \frac{1}{2\pi} \int_{-\Omega_c}^{\Omega_c} e^{j\Omega n} d\Omega$$

$$= \frac{\sin(\Omega_c n)}{\pi n}, \quad n \neq 0$$

$$= \Omega_c / \pi, \quad n = 0$$

DT “sinc” function
(extends to $\pm \infty$ in time, falls off only as $1/n$)
x[n] and X(Ω)
$X(\Omega)$ and $x[n]$

![Graphs showing magnitude of frequency response $|H(e^{j\Omega})|$ and corresponding impulse responses $h[n]$ for low-pass, high-pass, band-pass, and band-stop filters.](image)
Fast Fourier Transform (FFT) to compute samples of the DTFT for signals of finite duration

\[X(\Omega_k) = \sum_{m=0}^{P-1} x[m]e^{-j\Omega_km}, \quad x[n] = \frac{1}{P} \sum_{k=-P/2}^{(P/2)-1} X(\Omega_k)e^{j\Omega_kn} \]

where \(\Omega_k = k(2\pi/P) \), P is some integer (preferably a power of 2) such that P is longer than the time interval [0,L-1] over which \(x[n] \) is nonzero, and k ranges from \(-P/2\) to \((P/2)-1\) (for even P).

Computing these series involves \(O(P^2) \) operations – when P gets large, the computations get very s l o w....

Happily, in 1965 Cooley and Tukey published a fast method for computing the Fourier transform (aka FFT, IFFT), rediscovering a technique known to Gauss. This method takes \(O(P \log P) \) operations.

\[P = 1024, \quad P^2 = 1,048,576, \quad P \log P \approx 10,240 \]
Where do the Ω_k live?

e.g., for $P=6$ (even)

\[
\begin{align*}
\exp(j\Omega_0) &= \exp(j\Omega_1) \\
\exp(j\Omega_2) &= \exp(j\Omega_3) \\
\exp(j\Omega_{-2}) &= -j \\
\exp(j\Omega_{-3}) &= 1
\end{align*}
\]
Spectrum of Digital Transmissions

transmit @ 7 samples/bit

$|a_k|$ (scaled version of DTFT samples)

$x[n]$ synthesized from a_k
Spectrum of Digital Transmissions

transmit @ 7 samples/bit

$|a_k|$

$x[n]$ synthesized from a_k
Observations on previous figure

• The waveform $x[n]$ cannot vary faster than the step change every 7 samples, so we expect the highest frequency components in the waveform to have a period around 14 samples. (This is rough and qualitative, as $x[n]$ is not sinusoidal.)

• A period of 14 corresponds to a frequency of $2\pi/14 = \pi/7$, which is $1/7$ of the way from 0 to the positive end of the frequency axis at π (so k approximately 100/7 or 14 in the figure). And that indeed is the neighborhood of where the Fourier coefficients drop off significantly in magnitude.

• There are also lower-frequency components corresponding to the fact that the 1 or 0 level may be held for several bit slots.

• And there are higher-frequency components that result from the transitions between voltage levels being sudden, not gradual.
Effect of Low-Pass Channel

|a_k| cutoff @ ±k = 25

x[n] synthesized from a_k

|a_k| cutoff @ ±k = 15

x[n] synthesized from a_k
How Low Can We Go?

$|a_k| \text{ cutoff } @ \pm k = 15$

$|a_k| \text{ cutoff } @ \pm k = 14$

$|a_k| \text{ cutoff } @ \pm k = 13$

$|a_k| \text{ cutoff } @ \pm k = 12$

$|a_k| \text{ cutoff } @ \pm k = 11$

7 samples/bit \rightarrow 14 samples/period \rightarrow $k = (N/14) = (196/14) = 14$
6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.