MIT 6.035
Introduction to Dataflow Analysis

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Dataflow Analysis

• Used to determine properties of program that involve multiple basic blocks
• Typically used to enable transformations
 – common sub-expression elimination
 – constant and copy propagation
 – dead code elimination
• Analysis and transformation often come in pairs
Reaching Definitions

• Concept of definition and use
 – \(a = x+y \)
 – is a definition of \(a \)
 – is a use of \(x \) and \(y \)

• A definition reaches a use if
 – value written by definition
 – may be read by use
s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + a*b;
i = i + 1;

return s
Reaching Definitions and Constant Propagation

- Is a use of a variable a constant?
 - Check all reaching definitions
 - If all assign variable to same constant
 - Then use is in fact a constant

- Can replace variable with constant
Is a Constant in \(s = s + a \times b \)?

Yes!
On all reaching definitions
\(a = 4 \)
Constant Propagation Transform

Yes!
On all reaching definitions
a = 4

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + 4*b;
i = i + 1;

return s
Is b Constant in $s = s + a \times b$?

No!

One reaching definition with $b = 1$

One reaching definition with $b = 2$
Splitting
Preserves Information Lost At Merges

s = 0;
a = 4;
i = 0;
k == 0

s = s + a*b;
i = i + 1;
return s

b = 1;
b = 2;
i < n

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + a*b;
i = i + 1;
return s

return s
Splitting
Preserves Information Lost At Merges

\[s = 0; \]
\[a = 4; \]
\[i = 0; \]
\[k == 0 \]

\[b = 1; \]
\[b = 2; \]

\[i < n \]

\[s = s + a \times b; \]
\[i = i + 1; \]

\[\text{return } s \]

\[s = 0; \]
\[a = 4; \]
\[i = 0; \]
\[k == 0 \]

\[b = 1; \]
\[b = 2; \]

\[i < n \]

\[s = s + a \times 1; \]
\[i = i + 1; \]

\[\text{return } s \]

\[s = s + a \times 2; \]
\[i = i + 1; \]

\[\text{return } s \]
Computing Reaching Definitions

• Compute with sets of definitions
 – represent sets using bit vectors
 – each definition has a position in bit vector

• At each basic block, compute
 – definitions that reach start of block
 – definitions that reach end of block

• Do computation by simulating execution of program until reach fixed point
1: s = 0;
2: a = 4;
3: i = 0;
k == 0
4: b = 1;
5: b = 2;
i < n
6: s = s + a*b;
7: i = i + 1;

return s
Formalizing Analysis

• Each basic block has
 – IN - set of definitions that reach beginning of block
 – OUT - set of definitions that reach end of block
 – GEN - set of definitions generated in block
 – KILL - set of definitions killed in block
• GEN\[s = s + a*b; i = i + 1;\] = 0000011
• KILL\[s = s + a*b; i = i + 1;\] = 1010000
• Compiler scans each basic block to derive GEN and KILL sets
Dataflow Equations

- $\text{IN}[b] = \text{OUT}[b_1] \cup \ldots \cup \text{OUT}[b_n]$
 - where b_1, \ldots, b_n are predecessors of b in CFG
- $\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b]$
- $\text{IN}[\text{entry}] = 0000000$
- Result: system of equations
Solving Equations

• Use fixed point algorithm
• Initialize with solution of \(\text{OUT}[b] = 0000000 \)
• Repeatedly apply equations
 – \(\text{IN}[b] = \text{OUT}[b1] \cup \ldots \cup \text{OUT}[bn] \)
 – \(\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b] \)
• Until reach fixed point
• Until equation application has no further effect
• Use a worklist to track which equation applications may have a further effect
Reaching Definitions Algorithm

for all nodes n in N OUT[n] = emptyset; // OUT[n] = GEN[n];
Changed = N; // N = all nodes in graph

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };
 IN[n] = emptyset;
 for all nodes p in predecessors(n) IN[n] = IN[n] U OUT[p];
 OUT[n] = GEN[n] U (IN[n] - KILL[n]);
 if (OUT[n] changed)
 for all nodes s in successors(n) Changed = Changed U { s };

Questions

• Does the algorithm halt?
 – yes, because transfer function is monotonic
 – if increase IN, increase OUT
 – in limit, all bits are 1

• If bit is 1, is there always an execution in which corresponding definition reaches basic block?

• If bit is 0, does the corresponding definition ever reach basic block?

• Concept of conservative analysis
Available Expressions

• An expression $x+y$ is available at a point p if
 – every path from the initial node to p evaluates $x+y$ before reaching p,
 – and there are no assignments to x or y after the evaluation but before p.

• Available Expression information can be used to do global (across basic blocks) CSE

• If expression is available at use, no need to reevaluate it
Computing Available Expressions

- Represent sets of expressions using bit vectors
- Each expression corresponds to a bit
- Run dataflow algorithm similar to reaching definitions
- Big difference
 - definition reaches a basic block if it comes from ANY predecessor in CFG
 - expression is available at a basic block only if it is available from ALL predecessors in CFG
Expressions
1: x+y
2: i<n
3: i+c
4: x==0

```plaintext
a = x+y;
x == 0

x = z;
b = x+y;

i = x+y;

i = x+y;
i = i+c;

i < n

c = x+y;
i = i+c;

d = x+y
```
Global CSE Transform

Expressions
1: x+y
2: i<n
3: i+c
4: x==0

must use same temp for CSE in all blocks
Formalizing Analysis

• Each basic block has
 – IN - set of expressions available at start of block
 – OUT - set of expressions available at end of block
 – GEN - set of expressions computed in block
 – KILL - set of expressions killed in in block

• GEN[$x = z; b = x+y]$ = 1000
• KILL[$x = z; b = x+y]$ = 1001
• Compiler scans each basic block to derive GEN and KILL sets
Dataflow Equations

- $IN[b] = OUT[b1] \cap ... \cap OUT[bn]$
 - where $b1, ..., bn$ are predecessors of b in CFG
- $OUT[b] = (IN[b] - KILL[b]) \cup GEN[b]$
- $IN[entry] = 0000$
- Result: system of equations
Solving Equations

- Use fixed point algorithm
- \(\text{IN[entry]} = 0000 \)
- Initialize \(\text{OUT[b]} = 1111 \)
- Repeatedly apply equations
 - \(\text{IN[b]} = \text{OUT[b1]} \) intersect ... intersect \(\text{OUT[bn]} \)
 - \(\text{OUT[b]} = (\text{IN[b]} - \text{KILL[b]}) \) U \(\text{GEN[b]} \)
- Use a worklist algorithm to reach fixed point
Available Expressions Algorithm

for all nodes n in N OUT[n] = E; // OUT[n] = E - KILL[n];
IN[Entry] = emptyset; OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph
while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };
 IN[n] = E; // E is set of all expressions
 for all nodes p in predecessors(n)
 IN[n] = IN[n] intersect OUT[p];
 OUT[n] = GEN[n] U (IN[n] - KILL[n]);
 if (OUT[n] changed)
 for all nodes s in successors(n) Changed = Changed U { s };
Questions

• Does algorithm always halt?
• If expression is available in some execution, is it always marked as available in analysis?
• If expression is not available in some execution, can it be marked as available in analysis?
• In what sense is algorithm conservative?
General Correctness

- Concept in actual program execution
 - Reaching definition: definition D, execution E at program point P
 - Available expression: expression X, execution E at program point P
- Analysis reasons about all possible executions
- For all executions E at program point P,
 - if a definition D reaches P in E
 - then D is in the set of reaching definitions at P from analysis
- Other way around
 - if D is not in the set of reaching definitions at P from analysis
 - then D never reaches P in any execution E
- For all executions E at program point P,
 - if an expression X is in set of available expressions at P from analysis
 - then X is available in E at P
- Concept of being conservative
Duality In Two Algorithms

• **Reaching definitions**
 – Confluence operation is set union
 – OUT[b] initialized to empty set

• **Available expressions**
 – Confluence operation is set intersection
 – OUT[b] initialized to set of available expressions

• **General framework for dataflow algorithms.**

• **Build parameterized dataflow analyzer once, use for all dataflow problems**
Liveness Analysis

• A variable \(v \) is live at point \(p \) if
 – \(v \) is used along some path starting at \(p \), and
 – no definition of \(v \) along the path before the use.

• When is a variable \(v \) dead at point \(p \)?
 – No use of \(v \) on any path from \(p \) to exit node, or
 – If all paths from \(p \) redefine \(v \) before using \(v \).
What Use is Liveness Information?

• Register allocation.
 – If a variable is dead, can reassign its register

• Dead code elimination.
 – Eliminate assignments to variables not read later.
 – But must not eliminate last assignment to variable (such as instance variable) visible outside CFG.
 – Can eliminate other dead assignments.
 – Handle by making all externally visible variables live on exit from CFG
Conceptual Idea of Analysis

• Simulate execution
• But start from exit and go backwards in CFG
• Compute liveness information from end to beginning of basic blocks
Liveness Example

• Assume a, b, c visible outside method
• So are live on exit
• Assume x, y, z, t not visible
• Represent Liveness Using Bit Vector
 – order is abcxyzt

```plaintext
a = x + y;
t = a;
c = a + x;
x == 0
```

```plaintext
b = t + z;
```

```plaintext
c = y + 1;
```

```
a = 1100111
1100100
c = 1110000
```
Dead Code Elimination

- Assume a, b, c visible outside method
- So are live on exit
- Assume x, y, z, t not visible
- Represent Liveness Using Bit Vector
 - order is abcxyzt

```
a = x+y;
t = a;
x == 0
```

```
b = t+z;
c = y+1;
```

```plaintext
1100111
1100100
1110000
```

```
a = x+y;
t = a;
x == 0
```

```
b = t+z;
```

```
c = y+1;
```

```plaintext
1100111
1100100
1110000
```
Formalizing Analysis

• Each basic block has
 – IN - set of variables live at start of block
 – OUT - set of variables live at end of block
 – USE - set of variables with upwards exposed uses in block
 – DEF - set of variables defined in block
• USE\[x = z; x = x+1;]\ = \{ z \} \ (x \ not \ in \ USE)
• DEF\[x = z; x = x+1; y = 1;]\ = \{x, y\}
• Compiler scans each basic block to derive USE and DEF sets
Algorithm

out[Exit] = emptyset; in[Exit] = use[Exit];
for all nodes n in N - { Exit } in[n] = emptyset;
Changed = N - { Exit };
while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };
 out[n] = emptyset;
 for all nodes s in successors(n) out[n] = out[n] U in[p];
 in[n] = use[n] U (out[n] - def[n]);
 if (in[n] changed)
 for all nodes p in predecessors(n)
 Changed = Changed U { p };
Similar to Other Dataflow Algorithms

- Backwards analysis, not forwards
- Still have transfer functions
- Still have confluence operators
- Can generalize framework to work for both forwards and backwards analyses
Analysis Information Inside Basic Blocks

• One detail:
 – Given dataflow information at IN and OUT of node
 – Also need to compute information at each statement of basic block
 – Simple propagation algorithm usually works fine
 – Can be viewed as restricted case of dataflow analysis
Pessimistic vs. Optimistic Analyses

- Available expressions is optimistic (for common sub-expression elimination)
 - Assume expressions are available at start of analysis
 - Analysis eliminates all that are not available
 - Cannot stop analysis early and use current result
- Live variables is pessimistic (for dead code elimination)
 - Assume all variables are live at start of analysis
 - Analysis finds variables that are dead
 - Can stop analysis early and use current result
- Dataflow setup same for both analyses
- Optimism/pessimism depends on intended use
Summary

• **Basic Blocks and Basic Block Optimizations**
 – Copy and constant propagation
 – Common sub-expression elimination
 – Dead code elimination

• **Dataflow Analysis**
 – Control flow graph
 – IN[b], OUT[b], transfer functions, join points

• **Paired analyses and transformations**
 – Reaching definitions/constant propagation
 – Available expressions/common sub-expression elimination
 – Liveness analysis/Dead code elimination

• **Stacked analysis and transformations work together**