MIT 6.035
Parse Table Construction

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Parse Tables (Review)

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s2</td>
<td>error goto s1</td>
</tr>
<tr>
<td>s1</td>
<td>error</td>
<td>error accept</td>
</tr>
<tr>
<td>s2</td>
<td>shift to s2</td>
<td>shift to s5 error goto s3</td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td>shift to s4 error</td>
</tr>
<tr>
<td>s4</td>
<td>reduce (2)</td>
<td>reduce (2) reduce (2)</td>
</tr>
<tr>
<td>s5</td>
<td>reduce (3)</td>
<td>reduce (3) reduce (3)</td>
</tr>
</tbody>
</table>

- Implements finite state control
- At each step, look up
 - Table[top of state stack] [input symbol]
- Then carry out the action
Parse Tables (Review)

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s2, error, error</td>
<td>goto s1</td>
</tr>
<tr>
<td>s1</td>
<td>error, error</td>
<td>accept</td>
</tr>
<tr>
<td>s2</td>
<td>shift to s2, shift to s5, error</td>
<td>goto s3</td>
</tr>
<tr>
<td>s3</td>
<td>error, shift to s4, error</td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>reduce (2), reduce (2), reduce (2)</td>
<td></td>
</tr>
<tr>
<td>s5</td>
<td>reduce (3), reduce (3), reduce (3)</td>
<td></td>
</tr>
</tbody>
</table>

- **Shift to s_n**
 - Push input token into the symbol stack
 - Push s_n into state stack
 - Advance to next input symbol
Parse Tables (Review)

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(</td>
<td>$</td>
</tr>
<tr>
<td>s0</td>
<td>shift to s2</td>
<td>error</td>
</tr>
<tr>
<td>s1</td>
<td>error</td>
<td>error</td>
</tr>
<tr>
<td>s2</td>
<td>shift to s2</td>
<td>shift to s5</td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td>shift to s4</td>
</tr>
<tr>
<td>s4</td>
<td>reduce (2)</td>
<td>reduce (2)</td>
</tr>
<tr>
<td>s5</td>
<td>reduce (3)</td>
<td>reduce (3)</td>
</tr>
</tbody>
</table>

- **Reduce (n)**
 - Pop both stacks as many times as the number of symbols on the RHS of rule n
 - Push LHS of rule n into symbol stack
Parser Generators and Parse Tables

- Parser generator (YACC, CUP)
 - Given a grammar
 - Produces a (shift-reduce) parser for that grammar
- Process grammar to synthesize a DFA
 - Contains states that the parser can be in
 - State transitions for terminals and non-terminals
- Use DFA to create an parse table
- Use parse table to generate code for parser
Example

• The grammar

\[S \to X \, \$ \] \hspace{1cm} (1)
\[X \to (X) \] \hspace{1cm} (2)
\[X \to (\) \] \hspace{1cm} (3)
DFA States Based on Items

• We need to capture how much of a given production we have scanned so far

\[X \rightarrow (X) \]

Are we here? Or here? Or here? Or here?
Items

- We need to capture how much of a given production we have scanned so far

\[X \rightarrow (X)\]

- Production Generates 4 items
 - \(X \rightarrow (X)\)
 - \(X \rightarrow (X)\)
 - \(X \rightarrow (X)\)
 - \(X \rightarrow (X)\)
Example of Items

• The grammar
 \[S \rightarrow X \, $ \]
 \[X \rightarrow (X) \]
 \[X \rightarrow (\;) \]

• Items
 \[S \rightarrow \bullet \, X \$ \]
 \[S \rightarrow X \bullet \, $ \]
 \[X \rightarrow \bullet \, (X) \]
 \[X \rightarrow (\, X) \]
 \[X \rightarrow (X \bullet) \]
 \[X \rightarrow (X) \bullet \]
 \[X \rightarrow \bullet \, (\;) \]
 \[X \rightarrow (\; \bullet) \]
 \[X \rightarrow (\; \;) \bullet \]
Notation

- If write production as $A \rightarrow \alpha c \beta$
 - α is sequence of grammar symbols, can be terminals and nonterminals in sequence
 - c is terminal
 - β is sequence of grammar symbols, can be terminals and nonterminals in sequence
- If write production as $A \rightarrow \alpha \cdot B \beta$
 - α, β as above
 - B is a single grammar symbol, either terminal or nonterminal
Key idea behind items

- States correspond to sets of items
- If the state contains the item $A \rightarrow \alpha \cdot c \cdot \beta$
 - Parser is expecting to eventually reduce using the production $A \rightarrow \alpha \cdot c \cdot \beta$
 - Parser has already parsed an α
 - It expects the input may contain c, then β
- If the state contains the item $A \rightarrow \alpha \cdot$ (empty)
 - Parser has already parsed an α
 - Will reduce using $A \rightarrow \alpha$
- If the state contains the item $S \rightarrow \alpha \cdot \$ and the input buffer is empty
 - Parser accepts input
Correlating Items and Actions

- If the current state contains the item $A \rightarrow \alpha \cdot c \beta$ and the current symbol in the input buffer is c
 - Parser shifts c onto stack
 - Next state will contain $A \rightarrow \alpha c \cdot \beta$
- If the current state contains the item $A \rightarrow \alpha \cdot$
 - Parser reduces using $A \rightarrow \alpha$
- If the current state contains the item $S \rightarrow \alpha \cdot \$ and the input buffer is empty
 - Parser accepts input
Closure() of a set of items

• Closure finds all the items in the same “state”
• Fixed Point Algorithm for Closure(I)
 • Every item in I is also an item in Closure(I)
 • If \(A \rightarrow \alpha \cdot B \beta \) is in Closure(I) and \(B \rightarrow \gamma \) is an item, then add \(B \rightarrow \gamma \) to Closure(I)
 • Repeat until no more new items can be added to Closure(I)
Example of Closure

- Closure({X → (• X)})

\[
\begin{align*}
X & \rightarrow (\cdot X) \\
X & \rightarrow \cdot (X) \\
X & \rightarrow \cdot ()
\end{align*}
\]

- Items

\[
\begin{align*}
S & \rightarrow \cdot X$ \\
S & \rightarrow X \cdot $ \\
X & \rightarrow \cdot (X) \\
X & \rightarrow (\cdot X) \\
X & \rightarrow (X \cdot) \\
X & \rightarrow (X) \cdot \\
X & \rightarrow \cdot () \\
X & \rightarrow (\cdot) \\
X & \rightarrow () \cdot
\end{align*}
\]
Another Example

- closure(\{S \rightarrow \cdot X\$\})

\[
\begin{align*}
S & \rightarrow \cdot X\$
X & \rightarrow \cdot (X)
X & \rightarrow \cdot ()
\end{align*}
\]

- Items

\[
\begin{align*}
S & \rightarrow \cdot X\$
S & \rightarrow X \cdot \$
X & \rightarrow \cdot (X)
X & \rightarrow (\cdot X)
X & \rightarrow (X \cdot)
X & \rightarrow (X) \cdot
X & \rightarrow \cdot ()
X & \rightarrow (\cdot)
X & \rightarrow () \cdot
\end{align*}
\]
Goto() of a set of items

• Goto finds the new state after consuming a grammar symbol while at the current state

• Algorithm for Goto(I, X) where I is a set of items and X is a grammar symbol

Goto(I, X) = Closure({ A → α X • β | A → α • X β in I })

• goto is the new set obtained by “moving the dot” over X
Example of Goto

• Goto (\{X \rightarrow (\cdot X)\}, X)

\[
\begin{align*}
X & \rightarrow (X \cdot) \\
\end{align*}
\]

• Items

\[
\begin{align*}
S & \rightarrow \cdot X$ \\
S & \rightarrow X \cdot $ \\
X & \rightarrow \cdot (X) \\
X & \rightarrow (\cdot X) \\
X & \rightarrow (X \cdot) \\
X & \rightarrow (X) \cdot \\
X & \rightarrow \cdot () \\
X & \rightarrow (\cdot) \\
X & \rightarrow (\cdot) \cdot \\
\end{align*}
\]
Another Example of Goto

- Goto (\{X \rightarrow \cdot (X)\}, ()

\[
\begin{align*}
X &\rightarrow (\cdot X) \\
X &\rightarrow \cdot (X) \\
X &\rightarrow \cdot ()
\end{align*}
\]

- Items

\[
\begin{align*}
S &\rightarrow \cdot X $ \\
S &\rightarrow X \cdot$ \\
X &\rightarrow \cdot (X) \\
X &\rightarrow (\cdot X) \\
X &\rightarrow (X \cdot) \\
X &\rightarrow (X) \cdot \\
X &\rightarrow \cdot () \\
X &\rightarrow (\cdot) \\
X &\rightarrow () \cdot
\end{align*}
\]
Building the DFA states

• Start with the item $S \rightarrow \cdot \beta \cdot$
• Create the first state to be $\text{Closure(} \{ S \rightarrow \cdot \beta \cdot \} \}$
• Pick a state I
 • for each item $A \rightarrow \alpha \cdot X \beta \cdot$ in I
 • find $\text{Goto}(I, X)$
 • if $\text{Goto}(I, X)$ is not already a state, make one
 • Add an edge X from state I to $\text{Goto}(I, X)$ state
• Repeat until no more additions possible
Constructing A Parse Engine

• Build a DFA - DONE

• Construct a parse table using the DFA
Creating the parse tables

- For each state
 - Transition to another state using a terminal symbol is a shift to that state \((\text{shift to } sn)\)
 - Transition to another state using a non-terminal is a goto to that state \((\text{goto } sn)\)
 - If there is an item \(A \rightarrow \alpha \cdot\) in the state, do a reduction with that production for all terminals \((\text{reduce } k)\)
Building Parse Table Example

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s2</td>
<td>error</td>
</tr>
<tr>
<td>s1</td>
<td>error</td>
<td>error</td>
</tr>
<tr>
<td>s2</td>
<td>shift to s2</td>
<td>shift to s5</td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td>shift to s4</td>
</tr>
<tr>
<td>s4</td>
<td>reduce (2)</td>
<td>reduce (2)</td>
</tr>
<tr>
<td>s5</td>
<td>reduce (3)</td>
<td>reduce (3)</td>
</tr>
</tbody>
</table>

S → •X$
X → •(X)
X → •()

S → X$
X → (X)
X → ()

X → (X •)
X → (X) •
X → () •
Potential Problem

- No lookahead
- Vulnerable to unnecessary conflicts
 - Shift/Reduce Conflicts (may reduce too soon in some cases)
 - Reduce/Reduce Conflicts
- Solution: Lookahead
 - Only for reductions - reduce only when next symbol can occur after nonterminal from production
 - Systematic lookahead, split states based on next symbol, action is always a function of next symbol
 - Can generalize to look ahead multiple symbols
Reduction-Only Lookahead Parsing

• If a state contains $A \rightarrow \beta$
• Reduce by $A \rightarrow \beta$ only if next input symbol can follow A in some derivation
• Example Grammar

 $$S \rightarrow X \$ \$$
 $$X \rightarrow a \$$
 $$X \rightarrow a \ b \$$
Parser Without Lookahead

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>a: shift to s1, b: error, $: error</td>
<td>goto s3</td>
</tr>
<tr>
<td>s1</td>
<td>reduce(2): S/R Conflict, reduce(2)</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>reduce(3), reduce(3), reduce(3)</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>error, error, accept</td>
<td></td>
</tr>
</tbody>
</table>

Grammar Rules

- $S \rightarrow X \cdot \$ \\
- $X \rightarrow a \cdot$ \\
- $X \rightarrow a \cdot b$ \\
- $S \rightarrow X \$ \\
- $X \rightarrow a \$ \\
- $X \rightarrow a \ b$
Creating parse tables with reduction-only lookahead

• For each state
 • Transition to another state using a terminal symbol is a shift to that state \((\text{shift to } sn)\) (same as before)
 • Transition to another state using a non-terminal is a goto that state \((\text{goto } sn)\) (same as before)
 • If there is an item \(X \rightarrow \alpha\) in the state do a reduction with that production whenever the current input symbol \(T\) may follow \(X\) in some derivation (more precise than before)

• Eliminates useless reduce actions
b never follows X in any derivation
resolve shift/reduce conflict to shift

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s1</td>
<td>error goto s3</td>
</tr>
<tr>
<td>s1</td>
<td>reduce(2)</td>
<td>shift to s2 reduce(2)</td>
</tr>
<tr>
<td>s2</td>
<td>reduce(3)</td>
<td>reduce(3)</td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td>error accept</td>
</tr>
</tbody>
</table>
More General Lookahead

• Items contain potential lookahead information, resulting in more states in finite state control

• Item of the form \([A \rightarrow \alpha \cdot \beta \ T]\) says
 • The parser has parsed an \(\alpha\)
 • If it parses a \(\beta\) and the next symbol is \(T\)
 • Then parser should reduce by \(A \rightarrow \alpha \beta\)

• In addition to current parser state, all parser actions are function of lookahead symbols
Terminology

- Many different parsing techniques
 - Each can handle some set of CFGs
 - Categorization of techniques
Terminology

- Many different parsing techniques
 - Each can handle some set of CFGs
 - Categorization of techniques
Terminology

- Many different parsing techniques
 - Each can handle some set of CFGs
 - Categorization of techniques

- \textbf{L} - parse from left to right
- \textbf{R} - parse from right to left
Terminology

• Many different parsing techniques
 • Each can handle some set of CFGs
 • Categorization of techniques

• \textbf{L} - leftmost derivation
• \textbf{R} - rightmost derivation
Terminology

• Many different parsing techniques
 • Each can handle some set of CFGs
 • Categorization of techniques

• Number of lookahead characters
Terminology

• Many different parsing techniques
 • Each can handle some set of CFGs
 • Categorization of techniques

• Examples: LL(0), LR(1)
• This lecture
 • LR(0) parser
 • SLR parser – LR(0) parser augmented with follow information
Summary

• Parser generators – given a grammar, produce a parser
• Standard technique
 • Automatically build a pushdown automaton
 • Obtain a shift-reduce parser
 • Finite state control plus push down stack
 • Table driven implementation
• Conflicts: Shift/Reduce, Reduce/Reduce
• Use of lookahead to eliminate conflicts
 • SLR parsing (eliminates useless reduce actions)
 • LR(k) parsing (lookahead throughout parser)
Follow() sets in SLR Parsing

For each non-terminal A, Follow(A) is the set of terminals that can come after A in some derivation.
Constraints for Follow()

- $ \in \text{Follow}(S)$, where S is the start symbol
- If $A \rightarrow \alpha B \beta$ is a production then $\text{First}(\beta) \subseteq \text{Follow}(B)$
- If $A \rightarrow \alpha B$ is a production then $\text{Follow}(A) \subseteq \text{Follow}(B)$
- If $A \rightarrow \alpha B \beta$ is a production and β derives ε then $\text{Follow}(A) \subseteq \text{Follow}(B)$
Algorithm for Follow

for all nonterminals NT

 Follow(NT) = {}

Follow(S) = { $ }$

while Follow sets keep changing

 for all productions $A \rightarrow \alpha B \beta$

 Follow(B) = Follow(B) \cup First(β)

 if (β derives ϵ) Follow(B) = Follow(B) \cup Follow(A)

 for all productions $A \rightarrow \alpha B$

 Follow(B) = Follow(B) \cup Follow(A)
Augmenting Example with Follow

• Example Grammar for Follow

\[S \rightarrow X \$ \]
\[X \rightarrow a \]
\[X \rightarrow a \ b \]

\[\text{Follow}(S) = \{ \$, \} \]
\[\text{Follow}(X) = \{ \$, \} \]
SLR Eliminates Shift/Reduce Conflict

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>a shift to s1, b error, $ error</td>
<td>goto s3</td>
</tr>
<tr>
<td>s1</td>
<td>reduce(2), shift to s2, reduce(2)</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>reduce(3), reduce(3)</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>error, error</td>
<td>accept</td>
</tr>
</tbody>
</table>

$S \rightarrow \cdot X \cdot \$
$X \rightarrow \cdot a$
$X \rightarrow \cdot a \ b$

$s_0 \quad s_1 \quad s_2 \quad s_3$

$b \not\in \text{Follow}(X)$
Basic Idea Behind LR(1)

- Split states in LR(0) DFA based on lookahead
- Reduce based on item and lookahead
LR(1) Items

- Items will keep info on
 - production
 - right-hand-side position (the dot)
 - look ahead symbol
- LR(1) item is of the form \([A \rightarrow \alpha \cdot \beta \cdot T]\)
 - \(A \rightarrow \alpha \beta\) is a production
 - The dot in \(A \rightarrow \alpha \cdot \beta\) denotes the position
 - \(T\) is a terminal or the end marker ($$\$$)
Meaning of LR(1) Items

- Item \([A \rightarrow \alpha \cdot \beta \cdot T]\) means
 - The parser has parsed an \(\alpha\)
 - If it parses a \(\beta\) and the next symbol is \(T\)
 - Then parser should reduce by \(A \rightarrow \alpha \beta\)
• The grammar
 \[S \rightarrow X\$ \]
 \[X \rightarrow (X) \]
 \[X \rightarrow \varepsilon \]

• Terminal symbols
 • ‘(’ ‘)’
 • ‘$’

• End of input symbol

LR(1) Items

[\[S \rightarrow \cdot X\$ \]]
[\[S \rightarrow \cdot X\$ \] (]
[\[S \rightarrow \cdot X\$ \] $]
[\[S \rightarrow X\cdot \$ \]]
[\[S \rightarrow X\cdot \$ \] (]
[\[S \rightarrow X\cdot \$ \] $]
[\[X \rightarrow \cdot (X) \]]
[\[X \rightarrow \cdot (X) \] (]
[\[X \rightarrow \cdot (X) \] $]
[\[X \rightarrow (\cdot X) \]]
[\[X \rightarrow (\cdot X) \] (]
[\[X \rightarrow (\cdot X) \] $]
Creating a LR(1) Parser Engine

• Need to define Closure() and Goto() functions for LR(1) items

• Need to provide an algorithm to create the DFA

• Need to provide an algorithm to create the parse table
Closure algorithm

Closure(I)
 repeat
 for all items \([A \rightarrow \alpha \cdot X \beta \ c]\) in I
 for any production \(X \rightarrow \gamma\)
 for any \(d \in \text{First}(\beta c)\)
 \(I = I \cup \{ [X \rightarrow \cdot \gamma \ d] \}\)
 until I does not change
Goto algorithm

Goto(I, X)

\[J = \{ \} \]

for any item \([A \rightarrow \alpha \cdot X \beta \ c]\) in I

\[J = J \cup \{[A \rightarrow \alpha X \cdot \beta \ c]\} \]

return Closure(J)
Building the LR(1) DFA

- Start with the item \([<S'> \rightarrow \bullet <S> \, \$ \, I]\)
 - I irrelevant because we will never shift $$
- Find the closure of the item and make an state
- Pick a state I
 - for each item \([A \rightarrow \alpha \bullet X \beta \, \epsilon]\) in I
 - find Goto(I, X)
 - if Goto(I, X) is not already a state, make one
 - Add an edge X from state I to Goto(I, X) state
- Repeat until no more additions possible
Creating the parse tables

• For each LR(1) DFA state
 • Transition to another state using a terminal symbol is a shift to that state (shift to sn)
 • Transition to another state using a non-terminal symbol is a goto that state (goto sn)
 • If there is an item [A → α • a] in the state, action for input symbol a is a reduction via the production A → α (reduce k)
LALR(1) Parser

• Motivation
 • LR(1) parse engine has a large number of states
 • Simple method to eliminate states
• If two LR(1) states are identical except for the look ahead symbol of the items
 Then Merge the states
• Result is LALR(1) DFA
• Typically has many fewer states than LR(1)
• May also have more reduce/reduce conflicts