1. See the textbook, Problem 2.35, page 130.

2. (a) \[p_X(1) = P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 1, Y = 3) = \frac{1}{12} + \frac{2}{12} + \frac{1}{12} = \frac{1}{3} \]

(b) The solution is a sketch of the following conditional PMF:

\[
\begin{align*}
p_{Y \mid X}(y \mid 1) &= \frac{p_{Y, X}(y, 1)}{p_X(1)} = \begin{cases}
1/4, & \text{if } y = 1, \\
1/2, & \text{if } y = 2, \\
1/4, & \text{if } y = 3, \\
0, & \text{otherwise.}
\end{cases}
\end{align*}
\]

(c) \[E[Y \mid X = 1] = \sum_{y=1}^{3} y p_{Y \mid X}(y \mid 1) = 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{2} + 3 \cdot \frac{1}{4} = 2 \]

(d) Assume that \(X \) and \(Y \) are independent. Because \(p_{X,Y}(3, 1) = 0 \) and \(p_{Y}(1) = 1/4, p_{X}(3) \) must equal zero. This further implies \(p_{X,Y}(3, 2) = 0 \) and \(p_{X,Y}(3, 3) = 0 \). All the remaining probability mass must go to \((X, Y) = (2, 2)\), making \(p_{X,Y}(2, 2) = 5/12, p_{X}(2) = 8/12, \) and \(p_{Y}(2) = 7/12 \). However, \(p_{X,Y}(2, 2) \neq p_{X}(2) \cdot p_{Y}(2) \), contradicting the assumption; thus \(X \) and \(Y \) are not independent.

A simpler explanation uses only two \(X \) values and two \(Y \) values for which all four \((X, Y)\) pairs have specified probabilities. Note that if \(X \) and \(Y \) are independent, then \(p_{X,Y}(1, 3)/p_{X,Y}(1, 1) \) and \(p_{X,Y}(2, 3)/p_{X,Y}(2, 1) \) must be equal because they must both equal \(p_{Y}(3)/p_{Y}(1) \). This necessary equality does not hold, so \(X \) and \(Y \) are not independent.

(e) Knowing that \(X \) and \(Y \) are conditionally independent given \(B \), we must have

\[
\frac{p_{X,Y}(1, 1)}{p_{X,Y}(1, 2)} = \frac{p_{X,Y}(2, 1)}{p_{X,Y}(2, 2)}
\]

since the \((X, Y)\) pairs in the equality are all in \(B \). Thus

\[
p_{X,Y}(2, 2) = \frac{p_{X,Y}(1, 2)p_{X,Y}(2, 1)}{p_{X,Y}(1, 1)} = \frac{(2/12)(2/12)}{1/12} = \frac{4}{12} = \frac{1}{3}.
\]

(f) Since \(P(B) = 9/12 = 3/4 \), we normalize to obtain \(p_{X,Y \mid B}(2, 2) = \frac{p_{X,Y}(2, 2)}{P(B)} = 4/9 \).

3. See the textbook, Problem 2.33, page 128.