Recitation 14 Solutions
October 26, 2010

1. (a) Let X (time between successive mosquito bites) = (time until the next mosquito bite). The mosquito bites occur according to a Bernoulli process with parameter $p = 0.5 - 0.2 = 0.1$. X is a geometric random variable, so, $E[X] = \frac{1}{p} = \frac{1}{0.1} = 10$.

$$\text{var}(X) = \frac{1 - p}{p^2} = \frac{1 - 0.1}{0.1^2} = 90.$$

(b) Mosquito bites occur according to a Bernoulli process with parameter $p = 0.1$. Tick bites occur according to another independent Bernoulli process with parameter $q = 0.1 \cdot 0.7 = 0.07$. Bug bites (mosquito or tick) occur according to a merged Bernoulli process from the mosquito and tick processes. Therefore, the probability of success at any time point for the merged Bernoulli process is $r = p + q - pq = 0.1 + 0.07 - 0.1 \cdot 0.07 = 0.163$. Let Y be the time between successive bug bites. As before, Y is a geometric random variable, so $E[Y] = \frac{1}{r} = \frac{1}{0.163} \approx 6.135$.

$$\text{var}(Y) = \frac{1 - r}{r^2} = \frac{1 - 0.163}{0.163^2} \approx 31.503$$

2. (a) In this case, since the trials are independent, the given information is irrelevant. P(next 2 trials result in 3 tails) = $\left(\frac{1}{8}\right)^2 = \frac{1}{64}$.

(b) i. The second order Pascal PMF for random variable N, as defined in the text, is the probability of the second success comes on the n^{th} trial. Thus, the random variable, K, is a shifted version of the second order Pascal PMF, i.e. $K = N - 1$. So, the probability that 1 success comes in the first k trials, where the next trial will result in the second success, can be expressed as:

$$p_K(k) = \binom{k}{1} \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^{k-1}, \quad k \geq 1.$$

ii. The number of tails before the first success, M, can be written as a random sum:

$$M = X_1 + X_2 + \cdots + X_N,$$

where X_i is the number of tails that occur on (unsuccessful) trial i, and N is the number of unsuccessful trials (i.e. trials before the first success). We notice that X is equally likely to be either 1 or 2, and that N is a shifted geometric: $N = R - 1$, where R is a geometric random variable with parameter $\frac{1}{4}$. Now we can apply our random sum formulae.

$$E[M] = E[X]E[N] = \left(\frac{3}{2}\right)(4 - 1) = \frac{9}{2}$$

$$\text{var}(M) = E[N\text{var}(X) + (E[X])^2\text{var}(N) = (4 - 1)(\frac{1}{4}) + \left(\frac{3}{2}\right)^2(12) = \frac{111}{4}.$$
(c) \(N \), the number of trials in Bob’s experiment, can be expressed as the sum of 3 independent random variables, \(X, Y, \) and \(Z \). \(X \) is the number of trials until Bob removes the first coin, \(Y \) the number of additional trials until he removes the second coin, and \(Z \) the additional number until he removes the third coin. We see that \(X \) is a geometric random variable with parameter \(\frac{1}{8} \), \(Y \) is geometric with parameter \(\frac{1}{4} \), and \(Z \) geometric with parameter \(\frac{1}{2} \). Hence,

\[
\]

3. Let \(M \) be the total number of draws you make until you have signed all \(n \) papers. Let \(T_i \) be the number of draws you make until drawing the next unsigned paper after having signed \(i \) papers. Then \(M = T_0 + \cdots + T_{n-1} \).

We can view the process of selecting the next unsigned paper after having signed \(i \) papers as a sequence of independent Bernoulli trials with probability of success \(p_i = \frac{n-i}{n} \), since there are \(n-i \) unsigned papers out of a total of \(n \) papers and receiving any paper is equally likely in a particular draw. The PMF governing the number of attempts we make until we succeed in drawing the next unsigned paper after having signed \(i \) papers is geometric. More concretely, the probability that it takes \(k \) tries to draw the next unsigned paper after having signed \(i \) papers is

\[
P(T_i = k) = (1 - p_i)^{k-1} p_i.
\]

With this model, the expected value of \(M \), the number of draws you make until you sign all \(n \) papers is:

\[
\mathbb{E}[M] = \mathbb{E} \left[\sum_{i=0}^{n-1} T_i \right] = \sum_{i=0}^{n-1} \mathbb{E}[T_i] = \sum_{i=0}^{n-1} \frac{n}{n-i} = n \sum_{k=1}^{n} \frac{1}{k}.
\]

For large \(n \), this is on the order of: \(n \int_{1}^{n} \frac{1}{x} \, dx = n \log n \).