LECTURE 3

- **Readings:** Section 1.5
- Review
 - Independence of two events
 - Independence of a collection of events

Review

\[P(A \mid B) = \frac{P(A \cap B)}{P(B)} \quad \text{assuming } P(B) > 0 \]

- Multiplication rule:
 \[P(A \cap B) = P(B) \cdot P(A \mid B) = P(A) \cdot P(B \mid A) \]

- Total probability theorem:
 \[P(B) = P(A)P(B \mid A) + P(A^c)P(B \mid A^c) \]

- Bayes rule:
 \[P(A_i \mid B) = \frac{P(A_i)P(B \mid A_i)}{P(B)} \]

Models based on conditional probabilities

- 3 tosses of a biased coin:
 \[P(H) = p, \ P(T) = 1 - p \]

Independence of two events

- **Defn:** \(P(B \mid A) = P(B) \)
 - “occurrence of \(A \) provides no information about \(B \)’s occurrence”

- Recall that \(P(A \cap B) = P(A) \cdot P(B \mid A) \)

- **Defn:** \(P(A \cap B) = P(A) \cdot P(B) \)

- Symmetric with respect to \(A \) and \(B \)
 - applies even if \(P(A) = 0 \)
 - implies \(P(A \mid B) = P(A) \)

Conditioning may affect independence

- Conditional independence, given \(C \), is defined as independence under probability law \(P(\cdot \mid C) \)

- Assume \(A \) and \(B \) are independent

- If we are told that \(C \) occurred, are \(A \) and \(B \) independent?
Conditioning may affect independence

- Two unfair coins, A and B:
 \[P(H \mid \text{coin } A) = 0.9, \quad P(H \mid \text{coin } B) = 0.1 \]

 Choose either coin with equal probability.

- Once we know it is coin A, are tosses independent?
- If we do not know which coin it is, are tosses independent?

 - Compare:
 \[P(\text{toss } 11 = H) \]
 \[P(\text{toss } 11 = H \mid \text{first 10 tosses are heads}) \]

Independence of a collection of events

- Intuitive definition:
 Information on some of the events tells us nothing about probabilities related to the remaining events

 - E.g.:
 \[P(A_1 \cap (A_2 \cup A_3) \mid A_5 \cap A_6^c) = P(A_1 \cap (A_2 \cup A_3)) \]

- Mathematical definition:
 Events A_1, A_2, \ldots, A_n are called independent if:
 \[P(A_i \cap A_j \cap \cdots \cap A_q) = P(A_i)P(A_j)\cdots P(A_q) \]
 for any distinct indices i, j, \ldots, q, (chosen from $\{1, \ldots, n\}$)

Independence vs. pairwise independence

- Two independent fair coin tosses
 - A: First toss is H
 - B: Second toss is H
 - $P(A) = P(B) = 1/2$

 \[
 \begin{array}{cc}
 \text{HH} & \text{HT} \\
 \text{TH} & \text{TT} \\
 \end{array}
 \]

 - C: First and second toss give same result
 - $P(C) =$
 - $P(C \cap A) =$
 - $P(A \cap B \cap C) =$
 - $P(C \mid A \cap B) =$

 - Pairwise independence does not imply independence

The king's sibling

- The king comes from a family of two children. What is the probability that his sibling is female?