LECTURE 7

Review

\[p_X(x) = P(X = x) \]
\[p_{X,Y}(x, y) = P(X = x, Y = y) \]
\[p_{X|Y}(x | y) = P(X = x | Y = y) \]
\[p_X(x) = \sum_y p_{X,Y}(x, y) \]
\[p_{X,Y}(x, y) = p_X(x)p_{Y|X}(y | x) \]

Independent random variables

\[p_{X,Y,Z}(x, y, z) = p_X(x)p_{Y|X}(y | x)p_{Z|X,Y}(z | x, y) \]

- Random variables \(X, Y, Z \) are independent if:
 \[p_{X,Y,Z}(x, y, z) = p_X(x) \cdot p_Y(y) \cdot p_Z(z) \]
 for all \(x, y, z \)

- Independent?
 - What if we condition on \(X \leq 2 \) and \(Y \geq 3? \)

Expectations

\[E[X] = \sum_x x p_X(x) \]
\[E[g(X,Y)] = \sum_x \sum_y g(x, y)p_{X,Y}(x, y) \]

- In general: \(E[g(X,Y)] \neq g(E[X], E[Y]) \)

- \(E[\alpha X + \beta] = \alpha E[X] + \beta \)

- If \(X, Y \) are independent:
 - \(E[XY] = E[X]E[Y] \)
 - \(E[g(X)h(Y)] = E[g(X)] \cdot E[h(Y)] \)
Variances

- $\text{Var}(aX) = a^2 \text{Var}(X)$
- $\text{Var}(X + a) = \text{Var}(X)$

- Let $Z = X + Y$.
 If X, Y are independent:
 \[
 \text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)
 \]

- Examples:
 - If $X = Y$, $\text{Var}(X + Y) = $
 - If $X = -Y$, $\text{Var}(X + Y) = $
 - If X, Y indep., and $Z = X - 3Y$, $\text{Var}(Z) = $

Binomial mean and variance

- $X =$ # of successes in n independent trials
 - probability of success p
 \[
 E[X] = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}
 \]
 - $X_i = \begin{cases} 1, & \text{if success in trial } i, \\ 0, & \text{otherwise} \end{cases}$

- $E[X_i] = $
- $E[X] = $
- $\text{Var}(X_i) = $
- $\text{Var}(X) = $

The hat problem

- n people throw their hats in a box and then pick one at random.
 - X: number of people who get their own hat
 - Find $E[X]$

 \[
 X_i = \begin{cases} 1, & \text{if } i \text{ selects own hat} \\ 0, & \text{otherwise.} \end{cases}
 \]

- $X = X_1 + X_2 + \cdots + X_n$
- $P(X_i = 1) = $
- $E[X_i] = $
- Are the X_i independent?
- $E[X] = $

Variance in the hat problem

- $\text{Var}(X) = E[X^2] - (E[X])^2 = E[X^2] - 1$

 \[
 X^2 = \sum_i X_i^2 + \sum_{i,j:i\neq j} X_i X_j
 \]

- $E[X^2] = $

 \[
 P(X_1 X_2 = 1) = P(X_1 = 1) \cdot P(X_2 = 1 \mid X_1 = 1)
 \]

 =

- $E[X^2] = $
- $\text{Var}(X) = $