Problem 27.* We toss n times a biased coin whose probability of heads, denoted by q, is the value of a random variable Q with given mean μ and positive variance σ^2. Let X_i be a Bernoulli random variable that models the outcome of the ith toss (i.e., $X_i = 1$ if the ith toss is a head). We assume that X_1, \ldots, X_n are conditionally independent, given $Q = q$. Let X be the number of heads obtained in the n tosses.

(a) Use the law of iterated expectations to find $E[X_i]$ and $E[X]$.

(b) Find $\text{cov}(X_i, X_j)$. Are X_1, \ldots, X_n independent?

(c) Use the law of total variance to find $\text{var}(X)$. Verify your answer using the covariance result of part (b).