LECTURE 13
The Bernoulli process

• **Readings:** Section 6.1

Lecture outline
• Definition of Bernoulli process
• Random processes
• Basic properties of Bernoulli process
• Distribution of interarrival times
• The time of the kth success
• Merging and splitting

The Bernoulli process

• A sequence of independent Bernoulli trials

• At each trial, i:
 – $P(\text{success}) = P(X_i = 1) = p$
 – $P(\text{failure}) = P(X_i = 0) = 1 - p$

• Examples:
 – Sequence of lottery wins/losses
 – Sequence of ups and downs of the Dow Jones
 – Arrivals (each second) to a bank
 – Arrivals (at each time slot) to server

Random processes

• First view:
 sequence of random variables X_1, X_2, \ldots

• $E[X_t] =$

• $\text{Var}(X_t) =$

• Second view:
 what is the right sample space?

• $P(X_t = 1 \text{ for all } t) =$

• Random processes we will study:
 – Bernoulli process
 (memoryless, discrete time)
 – Poisson process
 (memoryless, continuous time)
 – Markov chains
 (with memory/dependence across time)

Number of successes S in n time slots

• $P(S = k) =$

• $E[S] =$

• $\text{Var}(S) =$
Interarrival times

- T_1: number of trials until first success
 - $P(T_1 = t) =$
 - Memoryless property
 - $E[T_1] =$
 - $\text{Var}(T_1) =$

- If you buy a lottery ticket every day, what is the distribution of the length of the first string of losing days?

Time of the kth arrival

- Given that first arrival was at time t i.e., $T_1 = t$:
 - additional time, T_2, until next arrival
 - has the same (geometric) distribution
 - independent of T_1

- Y_k: number of trials to kth success
 - $E[Y_k] =$
 - $\text{Var}(Y_k) =$
 - $P(Y_k = t) =$

Splitting of a Bernoulli Process

(Using independent coin flips)

yields Bernoulli processes

Merging of Indep. Bernoulli Processes

yields a Bernoulli process (collisions are counted as one arrival)