LECTURE 14

The Poisson process

- **Readings:** Start Section 6.2.

Lecture outline

- Review of Bernoulli process
- Definition of Poisson process
- Distribution of number of arrivals
- Distribution of interarrival times
- Other properties of the Poisson process

Definition of the Poisson process

\[P(k, \tau) = \text{Prob. of } k \text{ arrivals in interval of duration } \tau \]

- **Time homogeneity:**
 \[P(k, \delta) = P(k, \tau) \]
 Numbers of arrivals in disjoint time intervals are independent

- **Small interval probabilities:**
 For VERY small \(\delta \):
 \[
P(k, \delta) \approx \begin{cases}
1 - \lambda \delta, & \text{if } k = 0; \\
\lambda \delta, & \text{if } k = 1; \\
0, & \text{if } k > 1.
\end{cases}
\]
 \(\lambda \): “arrival rate”

PMF of Number of Arrivals \(N \)

- Finely discretize \([0, t]\): approximately Bernoulli
- \(N_t \) (of discrete approximation): binomial
- Taking \(\delta \to 0 \) (or \(n \to \infty \)) gives:
 \[
P(k, \tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \quad k = 0, 1, \ldots
\]
- \(E[N_t] = \lambda t, \quad \text{var}(N_t) = \lambda t \)
Example

- You get email according to a Poisson process at a rate of $\lambda = 5$ messages per hour. You check your email every thirty minutes.

- $\text{Prob}(\text{no new messages}) =$

- $\text{Prob}(\text{one new message}) =$

Interarrival Times

- Y_k time of kth arrival

- Erlang distribution:

 $$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0$$

 - Memoryless property: The time to the next arrival is independent of the past

Bernoulli/Poisson Relation

<table>
<thead>
<tr>
<th></th>
<th>POISSON</th>
<th>BERNOULLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times of Arrival</td>
<td>Continuous</td>
<td>Discrete</td>
</tr>
<tr>
<td>Arrival Rate</td>
<td>λ/unit time</td>
<td>p/per trial</td>
</tr>
<tr>
<td>PMF of # of Arrivals</td>
<td>Poisson</td>
<td>Binomial</td>
</tr>
<tr>
<td>Interarrival Time Distr.</td>
<td>Exponential</td>
<td>Geometric</td>
</tr>
<tr>
<td>Time to kth arrival</td>
<td>Erlang</td>
<td>Pascal</td>
</tr>
</tbody>
</table>

Merging Poisson Processes

- Sum of independent Poisson random variables is Poisson

- Merging of independent Poisson processes is Poisson

 - Red bulb flashes (Poisson)

 - Green bulb flashes (Poisson)

 - What is the probability that the next arrival comes from the first process?
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.