LECTURE 15

Poisson process — II

- Readings: Finish Section 6.2.
- Review of Poisson process
- Merging and splitting
- Examples
- Random incidence

Review
- Defining characteristics
 - Time homogeneity: \(P(k, \tau) \)
 - Independence
 - Small interval probabilities (small \(\delta \)):
 \[
 P(k, \delta) \approx \begin{cases}
 1 - \lambda \delta, & \text{if } k = 0, \\
 \lambda \delta, & \text{if } k = 1, \\
 0, & \text{if } k > 1.
 \end{cases}
 \]
- \(N_\tau \) is a Poisson r.v., with parameter \(\lambda \tau \):
 \[
 P(k) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \quad k = 0, 1, \ldots
 \]
 \[\mathbb{E}[N_\tau] = \text{var}(N_\tau) = \lambda \tau \]
- Interarrival times (\(k = 1 \)): exponential:
 \[
 f_{T_1}(t) = \lambda e^{-\lambda t}, \quad t \geq 0, \quad \mathbb{E}[T_1] = 1/\lambda
 \]
- Time \(Y_k \) to \(k \)th arrival: Erlang(\(k \)):
 \[
 f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0
 \]

Poisson fishing
- Assume: Poisson, \(\lambda = 0.6 \)/hour.
 - Fish for two hours.
 - if no catch, continue until first catch.

 a) \(P(\text{fish for more than two hours}) = \)

 b) \(P(\text{fish for more than two and less than five hours}) = \)

 c) \(P(\text{catch at least two fish}) = \)

 d) \(\mathbb{E}[\text{number of fish}] = \)

 e) \(\mathbb{E}[\text{future fishing time} | \text{fished for four hours}] = \)

 f) \(\mathbb{E}[\text{total fishing time}] = \)

Merging Poisson Processes (again)
- Merging of independent Poisson processes is Poisson

\[
\begin{array}{cccc}
\lambda_1 & & & \\
\lambda_2 & & & \\
\text{Red bulb flashes (Poisson)} & & & \text{All flashes (Poisson)} \\
\text{Green bulb flashes (Poisson)} & & & \\
- & What is the probability that the next arrival comes from the first process?
\end{array}
\]
Light bulb example

- Each light bulb has independent, exponential(λ) lifetime.
- Install three light bulbs. Find expected time until last light bulb dies out.

Splitting of Poisson processes

- Assume that email traffic through a server is a Poisson process. Destinations of different messages are independent.

```
Email Traffic leaving MIT
\lambda
\rightarrow
\begin{array}{c}
USA \\
(1 - p)\lambda
\end{array}
\rightarrow
\begin{array}{c}
Foreign \\
p\lambda
\end{array}
```

- Each output stream is Poisson.

Random incidence for Poisson

- Poisson process that has been running forever.
- Show up at some “random time” (really means “arbitrary time”)
- What is the distribution of the length of the chosen interarrival interval?

Random incidence in “renewal processes”

- Series of successive arrivals
 - i.i.d. interarrival times
 - but not necessarily exponential
- Example:
 - Bus interarrival times are equally likely to be 5 or 10 minutes
 - If you arrive at a “random time”:
 - what is the probability that you selected a 5 minute interarrival interval?
 - what is the expected time to next arrival?