LECTURE 19
Limit theorems – I

• Readings: Sections 5.1-5.3; start Section 5.4

• X_1, \ldots, X_n i.i.d.
 $$M_n = \frac{X_1 + \cdots + X_n}{n}$$
 What happens as $n \to \infty$?

• Why bother?
• A tool: Chebyshev’s inequality
• Convergence “in probability”
• Convergence of M_n
 (weak law of large numbers)

Chebyshev’s inequality

• Random variable X
 (with finite mean μ and variance σ^2)
 $$\sigma^2 = \int (x - \mu)^2 f_X(x) \, dx$$
 $$\geq \int_{-\infty}^{-c} (x - \mu)^2 f_X(x) \, dx + \int_{c}^{\infty} (x - \mu)^2 f_X(x) \, dx$$
 $$\geq c^2 \cdot P(|X - \mu| \geq c)$$

 $$P(|X - \mu| \geq c) \leq \frac{\sigma^2}{c^2}$$

Convergence “in probability”

• Sequence of random variables Y_n

• converges in probability to a number a:
 "(almost all) of the PMF/PDF of Y_n,
 eventually gets concentrated
 (arbitrarily) close to $a"

• For every $\epsilon > 0$,
 $$\lim_{n \to \infty} P(|Y_n - a| \geq \epsilon) = 0$$

Deterministic limits

• Sequence a_n
 Number a

• a_n converges to a
 $$\lim_{n \to \infty} a_n = a$$
 “a_n eventually gets and stays
 (arbitrarily) close to a”

• For every $\epsilon > 0$, there exists n_0, such that for every $n \geq n_0$, we have $|a_n - a| \leq \epsilon$.

Convergence “in probability”

• Sequence of random variables Y_n

• converges in probability to a number a:
 "(almost all) of the PMF/PDF of Y_n,
 eventually gets concentrated
 (arbitrarily) close to $a"

• For every $\epsilon > 0$,
 $$\lim_{n \to \infty} P(|Y_n - a| \geq \epsilon) = 0$$

Does Y_n converge?
Convergence of the sample mean
(Weak law of large numbers)

• \(X_1, X_2, \ldots \) i.i.d.
 finite mean \(\mu \) and variance \(\sigma^2 \)
 \[
 M_n = \frac{X_1 + \cdots + X_n}{n}
 \]

• \(E[M_n] = \)

• \(\text{Var}(M_n) = \)

\[
\Pr(\lvert M_n - \mu \rvert \geq \epsilon) \leq \frac{\text{Var}(M_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}
\]

• \(M_n \) converges in probability to \(\mu \)

The pollster's problem

• \(f \): fraction of population that “…”

• \(i \)th (randomly selected) person polled:
 \[
 X_i = \begin{cases}
 1, & \text{if yes,} \\
 0, & \text{if no.}
 \end{cases}
 \]

• \(M_n = (X_1 + \cdots + X_n)/n \)
 fraction of “yes” in our sample

• Goal: 95% confidence of \(\leq 1\% \) error
 \[
 \Pr(|M_n - f| \geq 0.01) \leq 0.05
 \]

• Use Chebyshev’s inequality:
 \[
 \Pr(|M_n - f| \geq 0.01) \leq \frac{\sigma^2_{M_n}}{(0.01)^2} = \frac{\sigma^2}{n(0.01)^2} \leq \frac{1}{4n(0.01)^2}
 \]

• If \(n = 50,000 \),
 then \(\Pr(|M_n - f| \geq 0.01) \leq 0.05 \)
 (conservative)

Different scalings of \(M_n \)

• \(X_1, \ldots, X_n \) i.i.d.
 finite variance \(\sigma^2 \)

• Look at three variants of their sum:

• \(S_n = X_1 + \cdots + X_n \)
 variance \(n\sigma^2 \)

• \(M_n = \frac{S_n}{n} \)
 variance \(\sigma^2/n \)
 converges “in probability” to \(E[X] \) (WLLN)

• \(\frac{S_n}{\sqrt{n}} \)
 constant variance \(\sigma^2 \)

 – Asymptotic shape?

The central limit theorem

• “Standardized” \(S_n = X_1 + \cdots + X_n \):
 \[
 Z_n = \frac{S_n - E[S_n]}{\sigma S_n} = \frac{S_n - nE[X]}{\sqrt{n}\sigma}
 \]

 – zero mean
 – unit variance

• Let \(Z \) be a standard normal r.v.
 (zero mean, unit variance)

• \textbf{Theorem:} For every \(c \):
 \[
 \Pr(Z_n \leq c) \rightarrow \Pr(Z \leq c)
 \]

• \(\Pr(Z \leq c) \) is the standard normal CDF,
 \(\Phi(c) \), available from the normal tables