Problem Set 5

Due: October 21

Reading: Course notes on number theory.

Problem 1. Suppose that one domino can cover exactly two squares on a chessboard, either vertically or horizontally.

(a) Can you tile an 8×8 chessboard with 32 dominos?

(b) Can you tile an 8×8 chessboard with 31 dominos if opposite corners are removed?

(c) Now suppose that an assortment of squares are removed from a chessboard. An example is shown below.
Given a truncated chessboard, show how to construct a bipartite graph G that has a perfect matching if and only if the chessboard can be tiled with dominos.

(d) Based on this construction and Hall’s theorem, can you state a necessary and sufficient condition for a truncated chessboard to be tilable with dominos? Try not to mention graphs or matchings!

Problem 2. Prove that $\gcd(ka, kb) = k \cdot \gcd(a, b)$ for all $k > 0$.

Problem 3. Suppose that $a \equiv b \pmod{n}$ and $n > 0$. Prove or disprove the following assertions:

(a) $a^c \equiv b^c \pmod{n}$ where $c \geq 0$

(b) $a^a \equiv b^b \pmod{n}$ where $a, b, \geq 0$

Problem 4. An inverse of k modulo $n > 1$ is an integer, k^{-1}, such that

$$k \cdot k^{-1} \equiv 1 \pmod{n}.$$

Show that k has an inverse iff $\gcd(k, n) = 1$. *Hint: We saw how to prove the above when n is prime.*

Problem 5. Here is a long run of composite numbers:

$$114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126$$

Prove that there exist arbitrarily long runs of composite numbers. Consider numbers a little bigger than $n!$ where $n! = n \cdot (n - 1) \cdots 3 \cdot 2 \cdot 1$.
Problem 6. Take a big number, such as 37273761261. Sum the digits, where every other one is negated:

\[3 + (−7) + 2 + (−7) + 3 + (−7) + 6 + (−1) + 2 + (−6) + 1 = −11 \]

As it turns out, the original number is a multiple of 11 if and only if this sum is a multiple of 11.

(a) Use a result from elsewhere on this problem set to show that \(10^k \equiv −1^k \pmod{11} \).

(b) Using this fact, explain why the procedure above works.

Problem 7. Let \(S_k = 1^k + 2^k + \ldots + (p - 1)^k \), where \(p \) is an odd prime and \(k \) is a positive multiple of \(p - 1 \). Use Fermat’s theorem to prove that \(S_k \equiv -1 \pmod{p} \).
Student’s Solutions to Problem Set 5

Your name:

Due date: October 21

Submission date:

Circle your TA: David Jelani Sayan Hanson

Collaboration statement: Circle one of the two choices and provide all pertinent info.

1. I worked alone and only with course materials.

2. I collaborated on this assignment with:
 - got help from:
 - and referred to:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

DO NOT WRITE BELOW THIS LINE

Copyright © 2005, Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld.

1People other than course staff.

2Give citations to texts and material other than the Fall ’02 course materials.