In-Class Problems Week 11, Wed.

Problem 1.
Your class tutorial has 12 students, who are supposed to break up into 4 groups of 3 students each. Your Teaching Assistant (TA) has observed that the students waste too much time trying to form balanced groups, so he decided to pre-assign students to groups and email the group assignments to his students.

(a) Your TA has a list of the 12 students in front of him, so he divides the list into consecutive groups of 3. For example, if the list is ABCDEFGHIJKL, the TA would define a sequence of four groups to be $(\{A, B, C\}, \{D, E, F\}, \{G, H, I\}, \{J, K, L\})$. This way of forming groups defines a mapping from a list of twelve students to a sequence of four groups. This is a k-to-1 mapping for what k?

(b) A group assignment specifies which students are in the same group, but not any order in which the groups should be listed. If we map a sequence of 4 groups,

$\{(A, B, C), \{D, E, F\}, \{G, H, I\}, \{J, K, L\}\},$

to a group assignment

$\{\{A, B, C\}, \{D, E, F\}, \{G, H, I\}, \{J, K, L\}\},$

this mapping is j-to-1 for what j?

(c) How many group assignments are possible?

(d) In how many ways can $3n$ students be broken up into n groups of 3?

Problem 2. (a) There are 30 books arranged in a row on a shelf. In how many ways can eight of these books be selected so that there are at least two unselected books between any two selected books?

(b) How many nonnegative integer solutions are there for the following equality?

$$x_1 + x_2 + \cdots + x_m = k.$$ (1)

(c) How many nonnegative integer solutions are there for the following inequality?

$$x_1 + x_2 + \cdots + x_m \leq k.$$ (2)

(d) How many length m weakly increasing sequences of nonnegative integers $\leq k$ are there?

Problem 3.
The Tao of BOOKKEEPER: we seek enlightenment through contemplation of the word BOOKKEEPER.

(a) In how many ways can you arrange the letters in the word POKE?
(b) In how many ways can you arrange the letters in the word BO_1O_2K? Observe that we have subscripted the O’s to make them distinct symbols.

(c) Suppose we map arrangements of the letters in BO_1O_2K to arrangements of the letters in $BOOK$ by erasing the subscripts. Indicate with arrows how the arrangements on the left are mapped to the arrangements on the right.

$$
\begin{align*}
&O_2BO_1K \\
&KO_2BO_1 \\
&O_1BO_2K \\
&KO_1BO_2 \\
&BO_1O_2K \\
&BO_2O_1K \\
&\cdots
\end{align*}
$$

(d) What kind of mapping is this, young grasshopper?

(e) In light of the Division Rule, how many arrangements are there of $BOOK$?

(f) Very good, young master! How many arrangements are there of the letters in $KE_1E_2PE_3R$?

(g) Suppose we map each arrangement of $KE_1E_2PE_3R$ to an arrangement of $KEEPER$ by erasing subscripts. List all the different arrangements of $KE_1E_2PE_3R$ that are mapped to $REPEEK$ in this way.

(h) What kind of mapping is this?

(i) So how many arrangements are there of the letters in $KEEPER$? *Now you are ready to face the BOOKKEEPER!*

(j) How many arrangements of $BO_1O_2K_1K_2E_1E_2PE_3R$ are there?

(k) How many arrangements of $BOOKK_1K_2E_1E_2PE_3R$ are there?

(l) How many arrangements of $BOOKKE_1E_2PE_3R$ are there?

(m) How many arrangements of $BOOKKEEPER$ are there?

Remember well what you have learned: subscripts on, subscripts off. This is the Tao of Bookkeeper.

(n) How many arrangements of $VOODOODOLL$ are there?

(o) How many length 52 sequences of digits contain exactly 17 two’s, 23 fives, and 12 nines?

Problem 4.
Find the coefficients of

(a) x^5 in $(1 + x)^{11}$

(b) x^8y^9 in $(3x + 2y)^{17}$

(c) a^6b^6 in $(a^2 + b^3)^5$
Problem 5.
Solve the following counting problems. Define an appropriate mapping (bijective or \(k\)-to-1) between a set whose size you know and the set in question.

(a) An independent living group is hosting nine new candidates for membership. Each candidate must be assigned a task: 1 must wash pots, 2 must clean the kitchen, 3 must clean the bathrooms, 1 must clean the common area, and 2 must serve dinner. Write a multinomial coefficient for the number of ways this can be done.

(b) How many nonnegative integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 17?