In-Class Problems Week 13, Mon.

Guess the Bigger Number Game

Team 1:
- Write two different integers between 0 and 7 on separate pieces of paper.
- Put the papers face down on a table.

Team 2:
- Turn over one paper and look at the number on it.
- Either stick with this number or switch to the other (unseen) number.

Team 2 wins if it chooses the larger number; else, Team 1 wins.

Problem 1.
The analysis given before class implies that Team 2 has a strategy that wins 4/7 of the time no matter how Team 1 plays. Can Team 2 do better? The answer is “no,” because Team 1 has a strategy that guarantees that it wins at least 3/7 of the time, no matter how Team 2 plays. Describe such a strategy for Team 1 and explain why it works.

Problem 2.
Let \(I_A \) and \(I_B \) be the indicator variables for events \(A \) and \(B \). Prove that \(I_A \) and \(I_B \) are independent iff \(A \) and \(B \) are independent.

Hint: Let \(A^1 := A \) and \(A^0 := \bar{A} \), so the event \([I_A = c]\) is the same as \(A^c \) for \(c \in \{0, 1\} \); likewise for \(B^1, B^0 \).

Problem 3.
Let \(R_1, R_2, \ldots, R_m \), be mutually independent random variables with uniform distribution on \([1, n]\). Let \(M := \max\{R_i \mid i \in [1, m]\} \).

(a) Write a formula for PDF\(_M\)(1).

(b) More generally, write a formula for \(\Pr[M \leq k] \).

(e) For \(k \in [1, n] \), write a formula for PDF\(_M\)(k) in terms of expressions of the form “\(\Pr[M \leq j] \)” for \(j \in [1, n] \).
Problem 4.
Suppose you have a biased coin that has probability \(p \) of flipping heads. Let \(J \) be the number of heads in \(n \) independent coin flips. So \(J \) has the general binomial distribution:

\[
PDF_J(k) = \binom{n}{k} p^k q^{n-k}
\]

where \(q := 1 - p \).

(a) Show that

\[
PDF_J(k - 1) < PDF_J(k) \quad \text{for} \quad k < np + p.
\]

\[
PDF_J(k - 1) > PDF_J(k) \quad \text{for} \quad k > np + p.
\]

(b) Conclude that the maximum value of \(PDF_J \) is asymptotically equal to

\[
\frac{1}{\sqrt{2\pi npq}}.
\]

Hint: For the asymptotic estimate, it’s ok to assume that \(np \) is an integer, so by part (a), the maximum value is \(PDF_J(np) \). Use Stirling’s Formula.

Supplemental problem

Problem 5.
You have just been married and you both want to have children. Of course, any child is a blessing, but your spouse prefers girls, so you decide to keep having children until you have a girl. In other words, if your 1st child is a girl, you’ll stop there. If it’s a boy, then you’ll have a 2nd child, too. If that one is a girl, you’ll stop there. Otherwise, you’ll have a 3rd child, and so on. Assume that you will never abandon this ingenious plan and that every child is equally likely to be a boy or a girl, independently of the number of its brothers so far. Let \(B \) be the boys that you will eventually have to put up with to enjoy the company of your beloved daughter.

(a) For \(i = 0, 1, 2, \ldots \), what is the value of \(PDF_B(i) \)?

(b) For \(i = 0, 1, 2, \ldots \), what is the value of \(CDF_B(i) \)?