Simple Graphs: Coloring

Flight Gates
flights need gates, but times overlap.
how many gates needed?

Airline Schedule
Conflicts Among 3 Flights
Needs gate at same time
Model all Conflicts with a Graph

Color the vertices

Color vertices so that adjacent vertices have different colors.

\[
\text{min \ # distinct colors needed} = \text{min \ # gates needed}
\]

Coloring the Vertices

Better coloring

assign gates:

4 colors
4 gates

3 colors
3 gates
Final Exams

Subjects conflict if student takes both, so need different time slots. How short an exam period?

Model as a Graph

Assign times:

4 time slots (best possible)

Map Coloring

Conflicting Allocation Problems

Separate habitats to house different species of animals, some incompatible with others?
Different frequencies for radio stations that interfere with each other?
Different colors to color a map?
Countries are the Vertices

![Diagram of countries as vertices]

Planar Four Coloring

Any planar map is 4-colorable. 1850’s: false proof published (was correct for 5 colors). 1970’s: proof with computer. 1990’s: much improved.

Chromatic Number

\[\chi(G) \]

\[\text{min #colors for } G \text{ is chromatic number} \]

Simple Cycles

\[\chi(C_{\text{even}}) = 2 \]

\[\chi(C_{\text{odd}}) = 3 \]
Complete Graph K_n

$\chi(K_n) = n$

The Wheel W_n

W_5

$\chi(W_{\text{odd}}) = 4$

$\chi(W_{\text{even}}) = 3$

Bounded Degree

all degrees $\leq k$, implies

$\chi(G) \leq k+1$

very simple algorithm...

"Greedy" Coloring

...color vertices in any order.
next vertex gets a color different from its neighbors.
$\leq k$ neighbors, so
$k+1$ colors always work
coloring arbitrary graphs

2-colorable? --easy to check
3-colorable? --hard to check
(even if planar)

find $\chi(G)$? --theoretically
no harder than 3-color, but
harder in practice