A simple graph:

Definition:
A simple graph G consists of
• a nonempty set, V, of vertices, and
• a set, E, of edges such that
each edge has two endpoints in V
Vertex degree

degree of a vertex is
of incident edges

\[\text{deg}(\bullet) = 2 \]

Vertex degree

degree of a vertex is
of incident edges

\[\text{deg}(\bullet) = 4 \]

Impossible Graph

Is there a graph with vertex degrees 2, 2, 1?

NO!

\[\begin{array}{c}
\text{2} \\
\text{1} \\
\text{2}
\end{array} \]

orphaned edge

Handshaking Lemma

sum of degrees is
twice # edges

\[2|E| = \sum_{v \in V} \text{deg}(v) \]

Proof: Each edge contributes 2 to the sum on the right
Handshaking Lemma
sum of degrees is twice # edges
\[2|E| = \sum_{v \in V} \deg(v) \]
2+2+1 = odd, so impossible

Sex in America: Men more Promiscuous?
Studies claim different %’s but agree that men average many more partners than women.
Graph theory shows this is nonsense

Sex Partner Graph

M

F

partners
Counting pairs of partners

avg degree(M) := \(\sum_{m \in M} \frac{\text{deg}(m)}{|M|} \)

\[\text{avg degree}(M) := \frac{\sum_{m \in M} \text{deg}(m)}{|M|} \]

avg degree(F) := \(\sum_{f \in F} \frac{\text{deg}(f)}{|F|} \)

\[\text{avg degree}(F) := \frac{\sum_{f \in F} \text{deg}(f)}{|F|} \]

avg degree(M) := \(\frac{\sum_{m \in M} \text{deg}(m)}{|M|} \)

avg degree(F) := \(\frac{\sum_{f \in F} \text{deg}(f)}{|F|} \)

\[\sum_{m \in M} \text{deg}(m) = |E| = \sum_{f \in F} \text{deg}(f) \]

Average number of partners

\[\text{avg - deg}(M) = 1.035 \cdot \text{avg - deg}(F) \]

Averages differ solely by ratio of females to males.

No big difference

Nothing to do with promiscuity
Why are surveys wrong?

Maybe people are *lying*:

- Males exaggerate?
- Females deny?

Maybe Males have partners outside the study