Equivalence Relations

two-way walks
walk from \(u \) to \(v \) and back from \(v \) to \(u \):
\(u \) and \(v \) are strongly connected.
\(u G^* v \) AND \(v G^* u \)

symmetry
relation \(R \) on set \(A \) is symmetric iff
\(a R b \) IMPLIES \(b R a \)

equivalence relations
transitive, symmetric & reflexive
Theorem: R is an equiv rel iff R is the strongly connected relation of some digraph.

equivalence relations

equivalence relations

equivalence relations

examples:

• = (equality)
• ≡ (mod n)
• same size
• same color

Graphical Properties of Relations

Reflexive

Asymmetric

Transitive

Symmetric

Representing Equivalences
Representing equivalences

For total function \(f : A \rightarrow B \) define relation \(\equiv_f \) on \(A \):
\[a \equiv_f a' \iff f(a) = f(a') \]

Theorem:
Relation \(R \) on set \(A \) is an equiv. relation IFF
\(R \) is \(\equiv_f \) for some \(f : A \rightarrow B \)

representing \(\equiv \) \((\mod n) \)
\[\equiv (\mod n) \] is \(\equiv_f \) where
\[f(k) ::= \text{rem}(k,n) \]

For partition \(\Pi \) of \(A \) define relation \(\equiv_\Pi \) on \(A \):
\[a \equiv_\Pi a' \iff a, a' \text{ are in the same block of } \Pi \]
Representing equivalences

Theorem:
Relation R on set A is an equiv. relation IFF

R is \equiv_{Π}

for some partition Π of A