Number Theory: GCD's & linear combinations

Arithmetic Assumptions
assume usual rules for +, ·, -:

- \(a (b+c) = ab + ac \), \(ab = ba \),
- \((ab)c = a (bc) \), \(a - a = 0 \),
- \(a + 0 = a \), \(a + 1 > a \), etc.

The Division Theorem
For \(b > 0 \) and any \(a \), have

- \(q = \text{quotient}(a,b) \)
- \(r = \text{remainder}(a,b) \)

\(\exists \) unique numbers \(q, r \) such that

- \(a = qb + r \) and \(0 \leq r < b \).

Take this for granted too!

Divisibility
\(c \) divides \(a \) (\(c|a \)) iff

- \(a = k \cdot c \) for some \(k \)

5|15 because 15 = 3 \cdot 5
n|0 because 0 = 0 \cdot n
Simple Divisibility Facts

- $c | a$ implies $c | (sa)$

 $[a = k'c$ implies $(sa) = (sk')c]$

- if $c | a$ and $c | b$ then $c | (a + b)$

 $[if a = k_1c, b = k_2c$ then $a + b = (k_1 + k_2)c]$}

Common Divisors

- Common divisors of a & b divide integer linear combinations of a & b.
GCD

gcd(a,b) ::= the greatest common divisor of a and b

gcd(10,12) = 2

gcd(13,12) = 1

gcd(17,17) = 17

gcd(0, n) = n for n > 0

GCD

lemma: p prime implies gcd(p,a) = 1 or p

proof: The only divisors of p are ±1 & ±p.