Prime Factorization

Every integer \(> 1 \) factors uniquely into a weakly decreasing sequence of primes.

Unique Prime Factorization

Example:
\[
61394323221 = 53 \cdot 37 \cdot 37 \cdot 37 \cdot 11 \cdot 11 \cdot 7 \cdot 3 \cdot 3 \cdot 3
\]

Prime Divisibility

Lemma: \(p \) prime and \(p \mid ab \) implies \(p \mid a \) or \(p \mid b \)

pf: say not \((p \mid a) \), so \(\gcd(p,a) = 1 \)
so, \(sa + tp = 1 b \)
\[
pl \quad pl \quad so \quad pl
\]
QED
Prime Divisibility

Cor: If p is prime, and $p | a_1 \cdot a_2 \cdots a_m$ then $p | a_i$ for some i.

pf: by induction on m.

Unique Prime Factorization

Every integer $n > 1$ has a unique factorization into primes: $p_1 \cdots p_k = n$ with $p_1 \geq p_2 \geq \cdots \geq p_k$

pf:

Suppose not. Choose smallest $n > 1$:

$n = p_1 \cdot p_2 \cdots p_k = q_1 \cdot q_2 \cdots q_m$

$p_1 \geq p_2 \geq \cdots \geq p_k$

$q_1 \geq q_2 \geq \cdots \geq q_m$

If $q_1 = p_1$, then $p_2 \cdots p_k = q_2 \cdots q_m$ is smaller nonunique.

So can assume $q_1 > p_1 \geq p_i$
Unique Prime Factorization

pf: but $q_1|n = p_1 \cdot p_2 \cdots p_k$

so $q_1|p_i$ for some i by Cor,

contradicting that $q_1 > p_i$

QED