Noncomputable Sets

Computable strings in \(\{0,1\}^\omega \)

An infinite string \(s \) in \(\{0,1\}^\omega \) is computable iff some procedure computes its digits.

(Procedure applied to argument \(n \) returns \(n \)th digit of \(s \).)

\{ASCII\}* is countable

Only countably many finite ASCII strings. (List them in order of length.)

Procedures can be expressed in ASCII, so only countably many procedures.

Noncomputable strings in \(\{0,1\}^\omega \)

So only countably many computable infinite binary strings.

But \(\{0,1\}^\omega \) is uncountable, so there must be noncomputable strings in \(\{0,1\}^\omega \) —in fact, uncountably many!
The Halting Problem

There is no test procedure for halting of arbitrary procedures. The Halting Problem is not decidable by computational procedures.

String procedure P takes a String argument:
- $P("no")$ returns 2
- $P("albert")$ returns "meyer"
- $P("&&%99!!")$ causes an error
- $P("what now?")$ runs forever.

Let s be an ASCII string defining P_s. Say s HALTS iff $P_s(s)$ returns something.

Suppose there was a procedure Q that decided HALTS:
- $Q(s)$ returns "yes" if s HALTS
- returns "no" otherwise
The Halting Problem

Modify \(Q \) to \(Q' \):
- \(Q'(s) \) returns "yes" if \(Q(s) \) returns "no"
- \(Q'(s) \) returns nothing if \(Q(s) \) returns "yes"

So
- \(s \) HALTS iff \(Q'(s) \) returns nothing

Let \(\dagger \) be the text for \(Q' \)
- So by def of HALTS:
 - \(\dagger \) HALTS iff \(Q'(\dagger) \) returns
- and by def of \(Q' \):
 - \(Q'(\dagger) \) returns iff \(\text{NOT}(\dagger \text{ HALTS}) \)

CONTRADICTION:
- \(\dagger \) HALTS iff \(\text{NOT}(\dagger \text{ HALTS}) \)
- There can't be such a \(Q \): it is impossible to write a procedure that decides whether strings HALT
The Type-checking Problem

There is no string procedure that type-checks perfectly, because:

Suppose \(C \) was a type-checking procedure: for program text \(s \)

\(C(s) \) returns “yes” if \(s \) would cause a run-time type error

returns “no” otherwise.

Use \(C \) to get a HALTS Tester \(H \):
to compute \(H(s) \), construct a new program text, \(s' \), that acts like a slightly modified interpreter for \(s \). Namely:

- \(s' \) skips any command that would cause \(s \) to make a run-time type error.
- \(s' \) purposely makes a type-error when it finds that \(s \) HALTS.

Then compute \(C(s') \) and return the same value.

So \(s \) HALTS

iff \(s' \) makes run-time type error

iff \(C(s') = “yes” \)

iff \(H(s) = “yes” \)
The Type-checking Problem

H solves the Halting Problem, a contradiction. So C must not error check correctly.

No run-time properties are decidable

The same reasoning shows that there is no perfect checker for essentially any property of procedure outcomes.