Set Theory: ZFC

Axioms of Zermelo-Frankel (ZFC) define the standard Theory of Sets

Some Axioms of Set Theory

Extensionality

\[x \text{ and } y \text{ have the same elements} \]

iff

\[\forall x \left[x \in y \iff x \in z \right] \]

iff

\[x \text{ and } y \text{ are members of the same sets} \]
Some Axioms of Set Theory

Extensionality
\[\forall x [x \in y \iff x \in z] \]

iff
\[\forall x [y \in x \iff z \in x] \]

Power set
Every set has a power set
\[\forall x \exists p \forall s.s \subseteq x \iff s \in p \]

Some Axioms of Set Theory

Comprehension
If S is a set, and P(x) is a predicate of set theory, then
\[\{x \in s \mid P(x)\} \]
is a set

Sets are Well Founded
According to ZF, the elements of a set have to be “simpler” than the set itself. In particular,
no set is a member of itself, or a member of a member...
Sets are Well Founded

Def: x is \in-minimal in y

x is in y, but no element of x is in y

Some Axioms of Set Theory

Foundation

Every nonempty set has an \in-minimal element

Sets are Well Founded

Def: x is \in-minimal in y

$x \in y$ AND

$[\forall z. z \in x \implies z \notin y]$

Some Axioms of Set Theory

Foundation

Every nonempty set has an \in-minimal element

$\forall x. [x \neq \emptyset \implies \exists y. y$ is \in-minimal in $x]$
Let $R ::= \{S\}$. If $S \in S$, then R has no \in-minimal element. If it exists, it must be S, but $S \in R$ and $S \in S$, so S is not \in-minimal in R.

Let $R ::= \{S\}$. $S \not\in S$ implies that

1. the collection of all sets is not a set, and
2. $W = \{s \in \text{Sets} \mid s \not\in s\}$

is the collection of all sets -- which is why it's not a set.