Structural Induction

To prove $P(x)$ holds for all x in recursively defined set R, prove
• $P(b)$ for each base case $b \in R$
• $P(c(x))$ for each constructor, c, assuming ind. hyp. $P(x)$

Matched Paren Strings M

Lemma: Every s in M has the same number of $]$’s and [’s.
Proof by structural induction on the definition of M
Matched Paren Strings M

Lemma: Every s in M has the same number of $]$'s and [$'s.

Let $EQ ::= \{\text{strings with same number of }] \text{ and } [\}$

Lemma (restated): $M \subseteq EQ$

Structural Induction on M

Proof:

Ind. Hyp. $P(s) ::= (s \in EQ)$

Base case ($s = \lambda$):

λ has 0 $]$'s and 0 [$'s, so $P(\lambda)$ is true.

base case is OK

Structural Induction on M

Constructor step: $s = [r]t$

can assume $P(r)$ and $P(t)$

$\#]$ in $s = \#]$ in $r + \#]$ in $t + 1$

$\#[$ in $s = \#[$ in $r + \#[$ in $t + 1$

so = $\begin{align*}
\text{by } P(r) & \\
\text{by } P(t) & \\
\text{so } P(s) \text{ is true } & \\
\text{construct case is OK} & \\
\end{align*}$

Structural Induction on M

so by struct. induct.

$M \subseteq EQ$

QED
Lemma.

\textbf{F18} is \textit{closed} under taking derivatives:
if \(f \in \text{F18} \), then \(f' \in \text{F18} \)

\textit{Class Problem}