6.045: Automata, Computability, and Complexity
Or, Great Ideas in Theoretical Computer Science
Spring, 2010

Class 9
Nancy Lynch
Today

• Mapping reducibility and Rice’s Theorem
• We’ve seen several undecidability proofs.
• Today we’ll extract some of the key ideas of those proofs and present them as general, abstract definitions and theorems.
• Two main ideas:
 – A formal definition of **reducibility** from one language to another. Captures many of the reduction arguments we have seen.
 – **Rice’s Theorem**, a general theorem about undecidability of properties of Turing machine behavior (or program behavior).
Today

• Mapping reducibility and Rice’s Theorem

• Topics:
 – Computable functions.
 – Mapping reducibility, \leq_m
 – Applications of \leq_m to show undecidability and non-recognizability of languages.
 – Rice’s Theorem
 – Applications of Rice’s Theorem

• Reading:
 – Sipser Section 5.3, Problems 5.28-5.30.
Computable Functions
Computable Functions

- These are needed to define mapping reducibility, \leq_m.
- **Definition:** A function $f: \Sigma_1^* \rightarrow \Sigma_2^*$ is **computable** if there is a Turing machine (or program) such that, for every w in Σ_1^*, M on input w halts with just $f(w)$ on its tape.
- To be definite, use basic TM model, except replace q_{acc} and q_{rej} states with one q_{halt} state.

- So far in this course, we’ve focused on accept/reject decisions, which let TMs **decide language membership**.
- That’s the same as computing functions from Σ^* to $\{\text{accept, reject}\}$.
- Now generalize to compute functions that produce strings.
Total vs. partial computability

• We require f to be total = defined for every string.
• Could also define partial computable (= partial recursive) functions, which are defined on some subset of Σ_1^*.
• Then M should not halt if f(w) is undefined.
Example 1: Computing prime numbers.

- $f: \{0, 1\}^* \rightarrow \{0, 1\}^*$
 - On input w that is a binary representation of positive integer i, result is the standard binary representation of the i^{th} prime number.
 - On inputs representing 0, result is the empty string ε.
 - Probably don’t care what the result is in this case, but totality requires that we define something.
 - For instance:
 - $f(\varepsilon) = f(0) = f(00) = \varepsilon$
 - $f(1) = f(01) = f(001) = 10$ (binary rep of 2, first prime)
 - $f(10) = f(010) = 11$ (3, second prime)
 - $f(11) = 101$ (5, third prime)
 - $f(100) = 111$ (7, fourth prime)
 - Computable, e.g., by sieve algorithm.
Computable functions

• **Example 2: Reverse machine.**
 - \(f: \{0, 1\}^* \rightarrow \{0, 1\}^* \)
 - On input \(w = < M > \), where \(M \) is a (basic) Turing machine, \(f(w) = < M' > \), where \(M' \) is a Turing machine that accepts exactly the reverses of the words accepted by \(M \).
 - \(L(M') = \{ w^R \mid w \in L(M) \} \)
 - On inputs \(w \) that don’t represent TMs, \(f(w) = \varepsilon \).
 - Computable:
 - \(M' \) reverses its input and then simulates \(M \).
 - Can compute description of \(M' \) from description of \(M \).
Computable functions

• Example 3: Transformations of DFAs, etc.
 – We studied several algorithmic transformations of DFAs and NFAs:
 • NFA → equivalent DFA
 • DFA for L → DFA for L^c
 • DFA for L → DFA for $\{ w^R \mid w \in L \}$
 • Etc.
 – All of these transformations can be formalized as computable functions (from machine representations to machine representations)
Mapping Reducibility
Mapping Reducibility

- **Definition:** Let $A \subseteq \Sigma_1^*$, $B \subseteq \Sigma_2^*$ be languages. Then A is mapping-reducible to B, $A \leq_m B$, provided that there is a computable function $f: \Sigma_1^* \rightarrow \Sigma_2^*$ such that, for every string w in Σ_1^*, $w \in A$ if and only if $f(w) \in B$.

- Two things to show for “if and only if”:

- We’ve already seen many instance of \leq_m in the reductions we’ve used to prove undecidability and non-recognizability, e.g.:
Mapping reducibility examples

- Example: $\text{Acc}_{TM} \leq_m \text{Acc01}_{TM}$

 Accepts the string 01, possibly others

- $<M, w> \rightarrow <M'_{M,w}>$, by computable function f.

 $M'_{M,w}$ behaves as follows: If M accepts w then it accepts everything; otherwise it accepts nothing.

- This f demonstrates mapping reducibility because:

 - If $<M, w> \in \text{Acc}_{TM}$ then $<M'_{M,w}> \in \text{Acc01}_{TM}$.
 - If $<M, w> \not\in \text{Acc}_{TM}$ then $<M'_{M,w}> \not\in \text{Acc01}_{TM}$.
 - Thus, we have “if and only if”, as needed.
 - And f is computable.

- Technicality: Must also map inputs not of the form $<M, w>$ somewhere.
Mapping reducibility examples

- Example: \(\text{Acc}_{\text{TM}} \leq_m (E_{\text{TM}})^c \)

Nonemptiness, \(\{ M | M \text{ accepts some string} \} \)

- \(\langle M, w \rangle \rightarrow \langle M'_{M,w} \rangle \), by computable function \(f \).
- Use same \(f \) as before: If \(M \) accepts \(w \) then \(M'_{M,w} \) accepts everything; otherwise it accepts nothing.
- But now we must show something different:
 - If \(\langle M, w \rangle \in \text{Acc}_{\text{TM}} \) then \(\langle M'_{M,w} \rangle \in (E_{\text{TM}})^c \).
 - Accepts something, in fact, accepts everything.
 - If \(\langle M, w \rangle \not\in \text{Acc}_{\text{TM}} \) then \(\langle M'_{M,w} \rangle \in E_{\text{TM}} \).
 - Accepts nothing.
- \(f \) is computable.

- Note: We didn’t show \(\text{Acc}_{\text{TM}} \leq_m E_{\text{TM}} \).
 - Reversed the sense of the answer (took the complement).
Mapping reducibility examples

• Example: $\text{Acc}_TM \leq_m \text{REG}_TM$.

• $<M, w> \rightarrow <M'_{M,w}>$, by computable function f.

• We defined f so that: If M accepts w then $M'_{M,w}$ accepts everything; otherwise it accepts exactly the strings of the form 0^n1^n, $n \geq 0$.

• So $<M, w> \in \text{Acc}_TM$ iff $M'_{M,w}$ accepts a regular language iff $<M'_{M,w}> \in \text{REG}_TM$.

TMs accepting a regular language
Mapping reducibility examples

• Example: \(\text{Acc}_{\text{TM}} \leq_m \text{MPCP} \).

\[\langle M, w \rangle \rightarrow \langle T_{\text{M},w}, t_{\text{M},w} \rangle, \text{by computable function } f, \text{where} \]
\[\langle T_{\text{M},w}, t_{\text{M},w} \rangle \text{ is an instance of } \text{MPCP} \text{ (set of tiles + distinguished tile).} \]

• We defined \(f \) so that \(\langle M, w \rangle \in \text{Acc}_{\text{TM}} \) iff \(T_{\text{M},w} \) has a match starting with \(t_{\text{M},w} \) iff \(\langle T_{\text{M},w}, t_{\text{M},w} \rangle \in \text{MPCP} \)

• Example: \(\text{Acc}_{\text{TM}} \leq_m \text{PCP} \).

\[\langle M, w \rangle \rightarrow \langle T_{\text{M},w} \rangle \text{ where } \langle M, w \rangle \in \text{Acc}_{\text{TM}} \text{ iff } T_{\text{M},w} \text{ has a match iff } \langle T_{\text{M},w} \rangle \in \text{PCP}. \]
Basic Theorems about \leq_m

• **Theorem 1:** If $A \leq_m B$ and B is Turing-decidable then A is Turing-decidable.

 Proof:

 – To decide if $w \in A$:
 • Compute $f(w)$
 – Can be done by a TM, since f is computable.
 • Decide whether $f(w) \in B$.
 – Can be done by a TM, since B is decidable.
 • Output the answer.

• **Corollary 2:** If $A \leq_m B$ and A is undecidable then B is undecidable.

• So undecidability of Acc_{TM} implies undecidability of $E_{\text{TM}}, \text{REG}_{\text{TM}}, \text{MPCP}$, etc.
Basic Theorems about \leq_m

- **Theorem 3**: If $A \leq_m B$ and B is Turing-recognizable then A is Turing-recognizable.

 Proof: On input w:

 - Compute $f(w)$.
 - Run a TM that recognizes B on input $f(w)$.
 - If this TM ever accepts, accept.

- **Corollary 4**: If $A \leq_m B$ and A is not Turing-recognizable then B is not Turing-recognizable.

- **Theorem 5**: $A \leq_m B$ if and only if $A^c \leq_m B^c$.

 Proof: Use same f.

- **Theorem 6**: If $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$.

 Proof: Compose the two functions.
Basic Theorems about \leq_m

- **Theorem 6**: If $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$.
- **Example**: PCP
 - Showed $\text{Acc}_{TM} \leq_m \text{MPCP}$.
 - Showed $\text{MPCP} \leq_m \text{PCP}$.
 - Conclude from Theorem 6 that $\text{Acc}_{TM} \leq_m \text{PCP}$.
More Applications of Mapping Reducibility
Applications of \leq_m

• We have already used \leq_m to show undecidability; now use it to show non-Turing-recognizability.

• Example: Acc01_{TM}

 – We already know that Acc01_{TM} is Turing-recognizable.
 – Now show that $(\text{Acc01}_{\text{TM}})^c$ is not Turing-recognizable.
 – We showed that $\text{Acc}_{\text{TM}} \leq_m \text{Acc01}_{\text{TM}}$.
 – So $(\text{Acc}_{\text{TM}})^c \leq_m (\text{Acc01}_{\text{TM}})^c$, by Theorem 5.
 – We also already know that $(\text{Acc}_{\text{TM}})^c$ is not Turing recognizable.
 – So $(\text{Acc01}_{\text{TM}})^c$ is not Turing-recognizable, by Corollary 4.
Applications of \leq_m

• Now an example of a language that is not Turing-recognizable and whose complement is also not Turing-recognizable.

• That is, it’s neither Turing-recognizable nor co-Turing-recognizable.

• Example: $\text{EQ}_{\text{TM}} = \{ < M_1, M_2 > | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
 – Important in practice, e.g.:
 • Compare two versions of the “same” program.
 • Compare the result of a compiler optimization to the original un-optimized compiler output.

• Theorem 7: EQ_{TM} is not Turing-recognizable.

• Theorem 8: $(\text{EQ}_{\text{TM}})^c$ is not Turing-recognizable.
Applications of \leq_m

- $\text{EQ}_{\text{TM}} = \{ < M_1, M_2 > \mid L(M_1) = L(M_2) \}$
- Theorem 7: EQ_{TM} is not Turing-recognizable.
- Proof:
 - Show $(\text{Acc}_{\text{TM}})^c \leq_m \text{EQ}_{\text{TM}}$ and use Corollary 4.
 - Already showed $(\text{Acc}_{\text{TM}})^c$ is not Turing-recognizable.
 - Equivalently, show $\text{Acc}_{\text{TM}} \leq_m (\text{EQ}_{\text{TM}})^c$.
 - Equivalent by Theorem 5.
 - Need:
 - Accepting iff not equivalent.
EQ\textsubscript{TM} is not Turing-recognizable.

• \(\text{Acc}_{\text{TM}} \leq_m (\text{EQ}_{\text{TM}})^c\):

 - Define \(f(x)\) so that \(x \in \text{Acc}_{\text{TM}}\) iff \(f(x) \in (\text{EQ}_{\text{TM}})^c\).
 - If \(x\) is not of the form \(<M, w>\) define \(f(x) = <M_0, M_0>\), where \(M_0\) is any particular TM.
 - Then \(x \not\in \text{Acc}_{\text{TM}}\) and \(f(x) \in \text{EQ}_{\text{TM}}\), which fits our requirements.
 - So now assume that \(x = <M, w>\).
 - Then define \(f(x) = <M_1, M_2>\), where:
 - \(M_1\) always rejects, and
 - \(M_2\) ignores its input, runs \(M\) on \(w\), and accepts iff \(M\) accepts \(w\).
 - Claim: \(x \in \text{Acc}_{\text{TM}}\) iff \(f(x) \in (\text{EQ}_{\text{TM}})^c\).
EQ\textsubscript{TM} is not Turing-recognizable.

- \(\text{Acc}_{\text{TM}} \leq_{\text{m}} (\text{EQ}_{\text{TM}})^{\text{c}} \):

 - Assume \(x = <M, w> \), define \(f(x) = <M_1, M_2> \), where:
 - \(M_1 \) always rejects, and
 - \(M_2 \) ignores its input, runs \(M \) on \(w \), and accepts iff \(M \) accepts \(w \).
 - **Claim:** \(x \in \text{Acc}_{\text{TM}} \) iff \(f(x) \in (\text{EQ}_{\text{TM}})^{\text{c}} \).
 - **Proof:**
 - If \(x \in \text{Acc}_{\text{TM}} \), then \(M \) accepts \(w \), so \(M_2 \) accepts everything, so \(<M_1, M_2> \not\in \text{EQ}_{\text{TM}} \), so \(<M_1, M_2> \in (\text{EQ}_{\text{TM}})^{\text{c}} \).
 - If \(x \not\in \text{Acc}_{\text{TM}} \), then \(M \) does not accept \(w \), so \(M_2 \) accepts nothing, so \(<M_1, M_2> \in \text{EQ}_{\text{TM}} \), so \(<M_1, M_2> \not\in (\text{EQ}_{\text{TM}})^{\text{c}} \).
EQ_{TM} is not Turing-recognizable.

• Assume $x = <M, w>$, define $f(x) = <M_1, M_2>$, where:
 – M_1 always rejects, and
 – M_2 ignores its input, runs M on w, and accepts iff M accepts w.

• **Claim:** $x \in \text{Acc}_{TM}$ iff $f(x) \in (\text{EQ}_{TM})^c$.

• Therefore, $\text{Acc}_{TM} \leq_m (\text{EQ}_{TM})^c$ using f.

• So $(\text{Acc}_{TM})^c \leq_m \text{EQ}_{TM}$ by Theorem 5.

• So EQ_{TM} is not Turing-recognizable, by Corollary 4.
Applications of \leq_m

- We have proved:
 - **Theorem 7:** EQ_{TM} is not Turing-recognizable.
 - It turns out that the complement isn’t T-recognizable either!
 - **Theorem 8:** $(\text{EQ}_{\text{TM}})^c$ is not Turing-recognizable.
 - **Proof:** Show $(\text{Acc}_{\text{TM}})^c \leq_m (\text{EQ}_{\text{TM}})^c$ and use Corollary 4.
 - We know $(\text{Acc}_{\text{TM}})^c$ is not Turing-recognizable.
 - Equivalently, show $\text{Acc}_{\text{TM}} \leq_m \text{EQ}_{\text{TM}}$.
 - Need:
 - Accepting iff equivalent.
\((\text{EQ}_{\text{TM}})^{c}\) is not Turing-recognizable.

- \(\text{Acc}_{\text{TM}} \leq_{m} \text{EQ}_{\text{TM}}\):

 - Define \(g(x)\) so that \(x \in \text{Acc}_{\text{TM}}\) iff \(f(x) \in \text{EQ}_{\text{TM}}\).
 - If \(x\) is not of the form \(<M, w>\) define \(f(x) = <M_0, M_0'>\), where \(L(M_0) \neq L(M_0')\).
 - Then \(x \notin \text{Acc}_{\text{TM}}\) and \(g(x) \notin \text{EQ}_{\text{TM}}\), as required.
 - So now assume \(x = <M, w>\).
 - Define \(g(x) = <M_1, M_2>\), where:
 - \(M_1\) accepts everything, and
 - \(M_2\) ignores its input, runs \(M\) on \(w\), accepts iff \(M\) does (as before).
 - **Claim:** \(x \in \text{Acc}_{\text{TM}}\) iff \(g(x) \in \text{EQ}_{\text{TM}}\).
\[(\text{EQ}_{\text{TM}})^c\] is not Turing-recognizable.

• \(\text{Acc}_{\text{TM}} \leq_m \text{EQ}_{\text{TM}}:\)

• Assume \(x = <M, w>\), define \(g(x) = <M_1, M_2>\), where:
 – \(M_1\) accepts everything, and
 – \(M_2\) ignores its input, runs \(M\) on \(w\), and accepts iff \(M\) does.

• Claim: \(x \in \text{Acc}_{\text{TM}}\) iff \(g(x) \in \text{EQ}_{\text{TM}}\).

• Proof:
 – If \(x \in \text{Acc}_{\text{TM}}\), then \(M_1\) and \(M_2\) both accept everything, so \(<M_1, M_2> \in \text{EQ}_{\text{TM}}.\)
 – If \(x \notin \text{Acc}_{\text{TM}}\), then \(M_1\) accepts everything and \(M_2\) accepts nothing, so \(<M_1, M_2> \notin \text{EQ}_{\text{TM}}.\)
(\text{EQ}_{TM})^c$ is not Turing-recognizable.

- Assume $x = <M, w>$, define $g(x) = <M_1, M_2>$, where:
 - M_1 accepts everything, and
 - M_2 ignores its input, runs M on w, and accepts iff M does.

- **Claim:** $x \in \text{Acc}_{TM}$ iff $g(x) \in \text{EQ}_{TM}$.
- Therefore, $\text{Acc}_{TM} \leq_m \text{EQ}_{TM}$ using g.
- So $(\text{Acc}_{TM})^c \leq_m (\text{EQ}_{TM})^c$ by Theorem 5.
- So $(\text{EQ}_{TM})^c$ is not Turing-recognizable, by Corollary 4.)
Rice’s Theorem
Rice’s Theorem

• We’ve seen many undecidability results for properties of TMs, e.g., for:
 – Acc\textsubscript{01}_TM = \{ < M > | 01 \in L(M) \}
 – E\textsubscript{TM} = \{ < M > | L(M) = \emptyset \}
 – REG\textsubscript{TM} = \{ < M > | L(M) is a regular language \}
• These are all properties of the language recognized by the machine.
• Contrast with:
 – \{ < M > | M never tries to move left off the left end of the tape \}
 – \{ < M > | M has more than 20 states \}
• Rice’s Theorem says (essentially) that any property of the language recognized by a TM is undecidable.
• Very powerful theorem.
• Covers many problems besides the ones above, e.g.:
 – \{ < M > | L(M) is a finite set \}
 – \{ < M > | L(M) contains some palindrome \}
 – …
Rice’s Theorem

- Rice’s Theorem says (essentially) that any property of the language recognized by a TM is undecidable.
- Technicality: Restrict to nontrivial properties.
- Define a set P of languages, to be a nontrivial property of Turing-recognizable languages provided that
 - There is some TM M_1 such that $L(M_1) \in P$, and
 - There is some TM M_2 such that $L(M_2) \notin P$.
- Equivalently:
 - There is some Turing-recognizable language L_1 in P, and
 - There is some Turing recognizable language L_2 not in P.

- Rice’s Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > \mid L(M) \in P \}$. Then M_P is undecidable.
- !
Rice’s Theorem

• P is a nontrivial property of T-recog. languages if:
 – There is some TM M₁ such that L(M₁) ∈ P, and
 – There is some TM M₂ such that L(M₂) ∉ P.

• Rice’s Theorem: Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ < M > | L(M) \in P \}$. Then M_P is undecidable.

• Proof:
 – Show $\text{Acc}_{\text{TM}} \leq_m M_P$.
 – Suppose WLOG that the empty language does not satisfy P, that is, $\emptyset \notin P$.
 – Why is this WLOG?
 • Otherwise, work with P^c instead of P.
 • Then $\emptyset \notin P^c$, continue the proof using P^c.
 • Conclude that M_{P^c} is undecidable.
 • Implies that M_P is undecidable.
Rice’s Theorem

- **Rice’s Theorem:** Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ <M> | L(M) \in P \}$. Then M_P is undecidable.

- **Proof:**
 - Show $\text{Acc}_{TM} \leq_m M_P$.
 - Suppose $\emptyset \not\in P$.
 - Need:
 - Let M_1 be any TM such that $L(M_1) \in P$, so $<M_1> \in M_P$.
 - How do we know such M_1 exists?
 - Because P is nontrivial.
Rice’s Theorem

- **Rice’s Theorem:** Let P be a nontrivial property of Turing-recognizable languages. Let $M_P = \{ \langle M \rangle \mid L(M) \in P \}$. Then M_P is undecidable.

- **Proof:**
 - Show $\text{Acc}_{TM} \leq_m M_P$.
 - Suppose $\emptyset \notin P$.
 - Need:
 - Let M_1 be any TM such that $L(M_1) \in P$, so $\langle M_1 \rangle \in M_P$.
 - Let M_2 be any TM such that $L(M_2) = \emptyset$, so $\langle M_2 \rangle \notin M_P$.

![Diagram](image-url)
Rice’s Theorem

• **Rice’s Theorem**: Let P be a nontrivial property. Then \(M_P = \{ < M > | L(M) \in P \} \) is undecidable.

• **Proof**:
 – Need:
 – Let \(M_1 \) be any TM such that \(L(M_1) \in P \), so \(< M_1 > \in M_P \).
 – Let \(M_2 \) be any TM such that \(L(M_2) = \emptyset \), so \(< M_2 > \notin M_P \).
 – Define \(f(x) \):
 • If \(x \) isn’t of the form \(<M, w> \), return something \(\notin M_P \), like \(< M_2 > \).
 • If \(x = <M, w> \), then \(f(x) = < M'_{M,w} > \), where:
 – \(M'_{M,w} \): On input \(y \):
 • ...
Rice’s Theorem

• Proof:
 – Show $\text{Acc}_{TM} \leq_m M_P$.
 – $L(M_1) \in P$, so $<M_1> \in M_P$.
 – $L(M_2) = \emptyset$, so $<M_2> \notin M_P$.
 – Define $f(x)$:
 • If $x = <M, w>$, then $f(x) = <M'_{M,w}>$, where:
 – $M'_{M,w}$: On input y:
 • Run M on w.
 • If M accepts w then run M_1 on y, accept if M_1 accepts y.
 • (If M doesn’t accept w or M_1 doesn’t accept y, loop forever.)
 • Tricky…
Rice’s Theorem

• Proof:
 – Show $\text{Acc}_{\text{TM}} \leq_m \text{M}_P$.
 – $L(M_1) \in P$, so $< M_1 > \in \text{M}_P$.
 – $L(M_2) = \emptyset$, so $< M_2 > \notin \text{M}_P$.
 – If $x = <M, w>$, then $f(x) = < M'_{M,w} >$, where:
 • $M'_{M,w}$: On input y:
 – Run M on w.
 – If M accepts w then run M_1 on y and accept if M_1 accepts y.
 – Claim $x \in \text{Acc}_{\text{TM}}$ if and only if $f(x) \in \text{M}_P$.
 • If $x = <M, w> \in \text{Acc}_{\text{TM}}$ then $L(M'_{M,w}) = L(M_1) \in P$, so $f(x) \in \text{M}_P$.
 • If $x = <M, w> \notin \text{Acc}_{\text{TM}}$ then $L(M'_{M,w}) = \emptyset \notin P$, so $f(x) \notin \text{M}_P$.
 – Therefore, $\text{Acc}_{\text{TM}} \leq_m \text{M}_P$ using f.
 – So M_P is undecidable, by Corollary 2.
Rice’s Theorem

• We have proved:

• **Rice’s Theorem:** Let P be a nontrivial property of Turing-recognizable languages. Let \(M_P = \{ < M > | L(M) \in P \} \). Then \(M_P \) is undecidable.

• **Note:**
 – Rice proves **undecidability**, doesn’t prove **non-Turing-recognizability**.
 – The sets \(M_P \) may be Turing-recognizable.

• **Example:** \(P = \) languages that contain 01
 – Then \(M_P = \{ < M > | 01 \in L(M) \} = \text{Acc01}_{TM} \).
 – Rice implies that \(M_P \) is undecidable.
 – But we already know that \(M_P = \text{Acc01}_{TM} \) is Turing-recognizable.
 • For a given input \(< M >\), a TM/program can simulate \(M \) on 01 and accept iff this simulation accepts.
More Applications of Rice’s Theorem
Applications of Rice’s Theorem

• Example 1: Using Rice
 – \{ < M > | M is a TM that accepts at least 37 different strings \}
 – Rice implies that this is undecidable.
 – This set = \(M_P \), where \(P \) = “the language contains at least 37 different strings”
 – \(P \) is a language property.
 – Nontrivial, since some TM-recognizable languages satisfy it and some don’t.
Applications of Rice’s Theorem

- **Example 2:** Property that isn’t a language property and is decidable
 - \{ < M > | M is a TM that has at least 37 states \}
 - Not a language property, but a property of a machine’s structure.
 - So Rice doesn’t apply.
 - Obviously decidable, since we can determine the number of states given the TM description.
Applications of Rice’s Theorem

• **Example 3:** Another property that isn’t a language property and is decidable
 – $\{ < M > | M \text{ is a TM that runs for at most 37 steps on input } 01 \}$
 – Not a language property, not a property of a machine’s structure.
 – Rice doesn’t apply.
 – Obviously decidable, since, given the TM description, we can just simulate it for 37 steps.
Applications of Rice’s Theorem

- **Example 4:** Undecidable property for which Rice’s Theorem doesn’t work to prove undecidability
 - Acc01SQ = \{ \langle M \rangle | M is a TM that accepts the string 01 in exactly a perfect square number of steps \}
 - Not a language property, Rice doesn’t apply.
 - Can prove undecidable by showing \(\text{Acc01}_{TM} \leq_m \text{Acc01SQ} \).
 - Acc01\(_{TM}\) is the set of TMs that accept 01 in any number of steps.
 - Acc01SQ\(_{TM}\) is the set of TMs that accept 01 in a perfect square number of steps.
 - Design mapping \(f \) so that \(M \) accepts 01 iff \(f(M) = \langle M' \rangle \) where \(M' \) accepts 01 in a perfect square number of steps.
 - \(f(\langle M \rangle) = \langle M' \rangle \) where…
Applications of Rice’s Theorem

• Example 4: Undecidable property for which Rice doesn’t work to prove undecidability
 – $\text{Acc01SQ} = \{ <M> | M$ is a TM that accepts the string 01 in exactly a perfect square number of steps $\}$
 – Show $\text{Acc01}_{TM} \leq_m \text{Acc01SQ}$.
 – Design f so M accepts 01 iff $f(M) = <M’>$ where $M’$ accepts 01 in a perfect square number of steps.
 – $f(<M>) = <M’>$ where:
 • $M’$: On input x:
 – If $x \neq 01$, then reject.
 – If $x = 01$, then simulate M on 01. If M accepts 01, then accept, but just after doing enough extra steps to ensure that the total number of steps is a perfect square.
 – $<M> \in \text{Acc01}_{TM}$ iff $M’$ accepts 01 in a perfect square number of steps, iff $f(<M>) \in \text{Acc01SQ}$.
 – So $\text{Acc01}_{TM} \leq_m \text{Acc01SQ}$, so Acc01SQ is undecidable.
Applications of Rice’s Theorem

• Example 5: Trivial language property
 – \{ < M > \mid M \text{ is a TM and } L(M) \text{ is recognized by some TM having an even number of states} \}
 – This is a language property.
 – So it might seem that Rice should apply…
 – But, it’s a trivial language property: Every Turing-recognizable language is recognized by some TM having an even number of states.
 • Could always add an extra, unreachable state.
 – Decidable or undecidable?
 – Decidable (of course), since it’s the set of all TMs.
Applications of Rice’s Theorem

• Example 6:
 – \{ < M > | M is a TM and L(M) is recognized by some TM having at most 37 states and at most 37 tape symbols \}
 – A language property.
 – Is it nontrivial?
 – Yes, some languages satisfy it and some don’t.
 – So Rice applies, showing that it’s undecidable.
 – Note: This isn’t \{ < M > | M is a TM that has at most 37 states and at most 37 tape symbols \}
 • That’s decidable.
 – What about \{ < M > | M is a TM and L(M) is recognized by some TM having at least 37 states and at least 37 tape symbols \}?
 • Trivial---all Turing-recognizable languages are recognized by some such machine.
Next time…

• The Recursion Theorem
• **Reading:**
 – Sipser Section 6.1