Today: More Complexity Theory

- Polynomial-time reducibility, NP-completeness, and the Satisfiability (SAT) problem

- Topics:
 - Introduction (Review and preview)
 - Polynomial-time reducibility, \leq_p
 - Clique \leq_p VertexCover and vice versa
 - NP-completeness
 - SAT is NP-complete

- Reading:
 - Sipser Sections 7.4-7.5

- Next:
 - Sipser Sections 7.4-7.5
Introduction
Introduction

• \(P = \{ L \mid \text{there is some polynomial-time deterministic Turing machine that decides } L \} \)

• \(NP = \{ L \mid \text{there is some polynomial-time nondeterministic Turing machine that decides } L \} \)

• Alternatively, \(L \in NP \) if and only if \((\exists V, \text{ a polynomial-time verifier }) (\exists p, \text{ a polynomial }) \) such that:
 \[x \in L \text{ iff } (\exists c, |c| \leq p(|x|)) \ [V(x, c) \text{ accepts }] \]

• To show that \(L \in NP \), we need only exhibit a suitable verifier \(V \) and show that it works (which requires saying what the certificates are).

• \(P \subseteq NP \), but it’s not known whether \(P = NP \).
Introduction

- \(P = \{ L | \exists \) poly-time deterministic TM that decides \(L \} \)
- \(NP = \{ L | \exists \) poly-time nondeterministic TM that decides \(L \} \)
- \(L \in NP \) if and only if \((\exists V, \) poly-time verifier \) \((\exists p, \) poly\)
 \(x \in L \) iff \((\exists c, |c| \leq p(|x|)) \) [\(V(x, c) \) accepts]

- Some languages are in NP, but are not known to be in P (and are not known to not be in P):
 - \(SAT = \{ < \phi > | \phi \) is a satisfiable Boolean formula \} \)
 - \(3COLOR = \{ < G > | G \) is an (undirected) graph whose vertices can be colored with \(\leq 3 \) colors with no 2 adjacent vertices colored the same \} \)
 - \(CLIQUE = \{ < G, k > | G \) is a graph with a k-clique \} \)
 - \(VERTEX-COVER = \{ < G, k > | G \) is a graph having a vertex cover of size \(k \} \)
CLIQUE

- **CLIQUE** = \{ < G, k > \mid G \text{ is a graph with a } k\text{-clique} \}
- **k-clique**: k vertices with edges between all pairs in the clique.
- In NP, not known to be in P, not known to not be in P.

- 3-cliques: \{ b, c, d \}, \{ c, d, f \}
- Cliques are easy to verify, but may be hard to find.
CLIQUE

- **CLIQUE** = \{ < G, k > | G is a graph with a k-clique \}

- Input to the VC problem: < G, 3 >
- Certificate, to show that < G, 3 > ∈ CLIQUE, is \{ b, c, d \} (or \{ c, d, f \}).
- Polynomial-time verifier can check that \{ b, c, d \} is a 3-clique.
VERTEX-COVER

- VERTEX-COVER = \{ < G, k > | G is a graph with a vertex cover of size k \}
- Vertex cover of G = (V, E): A subset C of V such that, for every edge (u,v) in E, either u ∈ C or v ∈ C.
 - A set of vertices that “covers” all the edges.
- In NP, not known to be in P, not known to not be in P.
- 3-vc: \{ a, b, d \}
- Vertex covers are easy to verify, may be hard to find.
VERTEX-COVER

- **VERTEX-COVER** = \{ < G, k > | G is a graph with a vertex cover of size k \}

Input to the VC problem: < G, 3 >
- Certificate, to show that < G, 3 > ∈ VC, is \{ a, b, d \}.
- Polynomial-time verifier can check that \{ a, b, d \} is a 3-vertex-cover.
Introduction

• Languages in NP, not known to be in P, not known to not be in P:
 – $\text{SAT} = \{ < \phi > \mid \phi \text{ is a satisfiable Boolean formula} \}$
 – $\text{3COLOR} = \{ < G > \mid G \text{ is a graph whose vertices can be colored with } \leq 3 \text{ colors with no 2 adjacent vertices colored the same} \}$
 – $\text{CLIQUE} = \{ < G, k > \mid G \text{ is a graph with a } k\text{-clique} \}$
 – $\text{VERTEX-COVER} = \{ < G, k > \mid G \text{ is a graph with a } \text{vc of size } k \}$

• There are many problems like these, where some structure seems hard to find, but is easy to verify.
• Q: Are these easy (in P) or hard (not in P)?
• Not yet known. We don’t yet have the math tools to answer this question.
• We can say something useful to reduce the apparent diversity of such problems---that many such problems are “reducible” to each other.
• So in a sense, they are the “same problem”.

Polynomial-Time Reducibility
Polynomial-Time Reducibility

• **Definition:** \(A \subseteq \Sigma^* \) is polynomial-time reducible to \(B \subseteq \Sigma^* \), \(A \leq_p B \), provided there is a polynomial-time computable function \(f: \Sigma^* \rightarrow \Sigma^* \) such that:
 \[
 (\forall w) \left[w \in A \text{ if and only if } f(x) \in B \right]
 \]

• Extends to different alphabets \(\Sigma_1 \) and \(\Sigma_2 \).
• Same as mapping reducibility, \(\leq_m \), but with a polynomial-time restriction.
Polynomial-Time Reducibility

- **Definition**: \(A \subseteq \Sigma^* \) is polynomial-time reducible to \(B \subseteq \Sigma^* \), \(A \leq_p B \), provided there is a polynomial-time computable function \(f: \Sigma^* \rightarrow \Sigma^* \) such that:
 \[
 (\forall w) [w \in A \text{ if and only if } f(x) \in B]
 \]

- **Theorem**: (Transitivity of \(\leq_p \))
 If \(A \leq_p B \) and \(B \leq_p C \) then \(A \leq_p C \).

- **Proof**:
 - Let \(f \) be a polynomial-time reducibility function from \(A \) to \(B \).
 - Let \(g \) be a polynomial-time reducibility function from \(B \) to \(C \).
Polynomial-Time Reducibility

- **Definition:** \(A \leq_p B \), provided there is a polynomial-time computable function \(f: \Sigma^* \rightarrow \Sigma^* \) such that:
 \[(\forall w) \ [w \in A \text{ if and only if } f(w) \in B] \]

- **Theorem:** If \(A \leq_p B \) and \(B \leq_p C \) then \(A \leq_p C \).

- **Proof:**
 - Let \(f \) be a polynomial-time reducibility function from \(A \) to \(B \).
 - Let \(g \) be a polynomial-time reducibility function from \(B \) to \(C \).
 - Define \(h(w) = g(f(w)) \).
 - Then \(w \in A \) if and only if \(f(w) \in B \) if and only if \(g(f(w)) \in C \).
 - \(h \) is poly-time computable:
Polynomial-Time Reducibility

- **Theorem**: If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$.
- **Proof**:
 - Let f be a polynomial-time reducibility function from A to B.
 - Let g be a polynomial-time reducibility function from B to C.
 - Define $h(w) = g(f(w))$.
 - h is polynomial-time computable:
 - $|f(w)|$ is bounded by a polynomial in $|w|$.
 - Time to compute $g(f(w))$ is bounded by a polynomial in $|f(w)|$, and therefore by a polynomial in $|w|$.
 - Uses the fact that substituting one polynomial for the variable in another yields yet another polynomial.
Polynomial-Time Reducibility

• **Definition:** \(A \leq_p B \), provided there is a polynomial-time computable function \(f: \Sigma^* \rightarrow \Sigma^* \) such that:
 \[
 (\forall w) \ [w \in A \text{ if and only if } f(x) \in B]
 \]

• **Theorem:** If \(A \leq_p B \) and \(B \in P \) then \(A \in P \).

• **Proof:**
 – Let \(f \) be a polynomial-time reducibility function from \(A \) to \(B \).
 – Let \(M \) be a polynomial-time decider for \(B \).
 – To decide whether \(w \in A \):
 • Compute \(x = f(w) \).
 • Run \(M \) to decide whether \(x \in B \), and accept / reject accordingly.
 – Polynomial time.

• **Corollary:** If \(A \leq_p B \) and \(A \) is not in \(P \) then \(B \) is not in \(P \).

• **Easiness propagates downward, hardness propagates upward.**
Polynomial-Time Reducibility

• Can use \(\leq_p \) to relate the difficulty of two problems:

 Theorem: If \(A \leq_p B \) and \(B \leq_p A \) then either both \(A \) and \(B \) are in \(P \) or neither is.

• Also, for problems in \(NP \):

 Theorem: If \(A \leq_p B \) and \(B \in NP \) then \(A \in NP \).

• **Proof:**

 – Let \(f \) be a polynomial-time reducibility function from \(A \) to \(B \).
 – Let \(M \) be a polynomial-time nondeterministic TM that decides \(B \).

 • Poly-bounded on all branches.
 • Accepts on at least one branch iff and only if input string is in \(B \).
 – \(NTM \) \(M' \) to decide membership in \(A \):

 – On input \(w \):

 • Compute \(x = f(w) \); \(|x|\) is bounded by a polynomial in \(|w|\).
 • Run \(M \) on \(x \) and accept/reject (on each branch) if \(M \) does.
 – Polynomial time-bounded \(NTM \).
Polynomial-Time Reducibility

Theorem: If $A \leq_p B$ and $B \in \text{NP}$ then $A \in \text{NP}$.

Proof:

- Let f be a polynomial-time reducibility function from A to B.
- Let M be a polynomial-time nondeterministic TM that decides B.
- NTM M' to decide membership in A:
 - On input w:
 - Compute $x = f(w)$; $|x|$ is bounded by a polynomial in $|w|$.
 - Run M on x and accept/reject (on each branch) if M does.
 - Polynomial time-bounded NTM.
- Decides membership in A:
 - M' has an accepting branch on input w
 iff M has an accepting branch on $f(w)$, by definition of M',
 iff $f(w) \in B$, since M decides B,
 iff $w \in A$, since $A \leq_p B$ using f.
 - So M' is a poly-time NTM that decides A, $A \in \text{NP}$.

Polynomial-Time Reducibility

• Theorem: If $A \leq_p B$ and $B \in \text{NP}$ then $A \in \text{NP}$.

• Corollary: If $A \leq_p B$ and A is not in NP, then B is not in NP.
Polynomial-Time Reducibility

• A technical result (curiosity):

• **Theorem:** If $A \in P$ and B is any nontrivial language (meaning not \emptyset, not Σ^*), then $A \leq_p B$.

• **Proof:**
 – Suppose $A \in P$.
 – Suppose B is a nontrivial language; pick $b_0 \in B$, $b_1 \in B^c$.
 – Define $f(w) = b_0$ if $w \in A$, b_1 if w is not in A.
 – f is polynomial-time computable; why?
 – Because A is polynomial time decidable.
 – Clearly $w \in A$ if and only if $f(w) \in B$.
 – So $A \leq_p B$.

• Trivial reduction: All the work is done by the decider for A, not by the reducibility and the decider for B.
CLIQUE and VERTEX-COVER
CLIQUE and VERTEX-COVER

• Two illustrations of \leq_p.
• Both CLIQUE and VC are in NP, not known to be in P, not known to not be in P.
• However, we can show that they are essentially equivalent: polynomial-time reducible to each other.
• So, although we don’t know how hard they are, we know they are (approximately) equally hard.
 – E.g., if either is in P, then so is the other.
• Theorem: CLIQUE \leq_p VC.
• Theorem: VC \leq_p CLIQUE.
CLIQUE and VERTEX-COVER

• **Theorem:** CLIQUE \leq_p VC.
• **Proof:**
 – Given input $< G, k >$ for CLIQUE, transform to input $< G', k' >$ for VC, in poly time, so that:
 $< G, k > \in$ CLIQUE if and only if $< G', k' > \in$ VC.

• **Example:**
 \[G = (V, E), k = 4 \]
 \[G' = (V, E'), k' = n - k = 3 \]
CLIQUE and VERTEX-COVER

- \(< G, k > \in \text{CLIQUE} \) if and only if \(< G’, k’ > \in \text{VC} \).
- Example: \(G = (V, E), k = 4, G’ = (V, E’), k’ = n – k = 3 \)

\(E’ = (V \times V) – E \), complement of edge set

- \(G \) has clique of size 4 (left nodes), \(G’ \) has a vertex cover of size \(7 – 4 = 3 \) (right nodes).
- All edges between 2 nodes on left are in \(E \), hence not in \(E’ \), so right nodes cover all edges in \(E’ \).
CLIQUE and VERTEX-COVER

• Theorem: CLIQUE \leq_p VC.

• Proof:
 – Given input $< G, k >$ for CLIQUE, transform to input $< G', k' >$ for VC, in poly time, so that $< G, k > \in$ CLIQUE iff $< G', k' > \in$ VC.
 – General transformation: $f(< G, k >)$, where $G = (V, E)$ and $|V| = n$, $= < G', n-k >$, where $G' = (V, E')$ and $E' = (V \times V) - E$.
 – Transformation is obviously polynomial-time.
 – Claim: G has a k-clique iff G’ has a size (n-k) vertex cover.
 – Proof of claim: Two directions:
 \Rightarrow Suppose G has a k-clique, show G’ has an (n-k)-vc.
 • Suppose C is a k-clique in G.
 • $V - C$ is an (n-k)-vc in G’:
 – Size is obviously right.
 – All edges between nodes in C appear in G, so all are missing in G’.
 – So nodes in V-C cover all edges of G’.
CLIQUE and VERTEX-COVER

• Theorem: CLIQUE ≤_p VC.

• Proof:
 – Given input < G, k > for CLIQUE, transform to input < G’, k’ > for VC, in poly time, so that < G, k > ∈ CLIQUE iff < G’, k’ > ∈ VC.
 – General transformation: f(< G, k >), where G = (V, E) and |V| = n, = < G’, n-k >, where G’ = (V, E’) and E’ = (V × V) – E.
 – Claim: G has a k-clique iff G’ has a size (n-k) vertex cover.
 – Proof of claim: Two directions:
 \[\iff \]
 Suppose G’ has an (n-k)-vc, show G has a k-clique.
 • Suppose D is an (n-k)-vc in G’.
 • V – D is a k-clique in G:
 – Size is obviously right.
 – All edges between nodes in V-D are missing in G’, so must appear in G.
 – So V-D is a clique in G.
CLIQUE and VERTEX-COVER

• **Theorem:** $VC \leq_p CLIQUE$.

• **Proof:** Almost the same.
 – Given input $< G, k >$ for VC, transform to input $< G', k' >$ for CLIQUE, in poly time, so that:
 $< G, k > \in VC$ if and only if $< G', k' > \in CLIQUE$.

• **Example:**

 $G = (V, E), k = 3$

 $G' = (V, E'), k' = 4$

 ![Graphs](image)
<G, k> ∈ VC if and only if <G', k'> ∈ CLIQUE.

- Example: G = (V, E), k = 3, G' = (V, E'), k' = 4

- E' = (V × V) – E, complement of edge set
- G has a 3-vc (right nodes), G' has clique of size 7 – 3 = 4 (left nodes).
- All edges between 2 nodes on left are missing from G, so are in G', so left nodes form a clique in G'.
Theorem: \(VC \leq_p CLIQUE \).

Proof:
- Given input \(< G, k >\) for VC, transform to input \(< G', k' >\) for CLIQUE, in poly time, so that \(< G, k > \in VC \) iff \(< G', k' > \in CLIQUE \).
- General transformation: Same as before.
 \(f(< G, k >), \) where \(G = (V, E) \) and \(|V| = n, \)
 \(= < G', n-k >, \) where \(G' = (V, E') \) and \(E' = (V \times V) - E. \)
- Claim: \(G \) has a \(k \)-vc iff \(G' \) has an \((n-k)\)-clique.
- Proof of claim: Similar to before, LTTR.
CLIQUE and VERTEX-COVER

- We have shown:
- **Theorem:** CLIQUE \(\leq_p \) VC.
- **Theorem:** VC \(\leq_p \) CLIQUE.
- So, they are essentially equivalent.
- Either both CLIQUE and VC are in P or neither is.
NP-Completeness
NP-Completeness

• \leq_p allows us to relate problems in NP, saying which allow us to solve which others efficiently.
• Even though we don’t know whether all of these problems are in P, we can use \leq_p to impose some structure on the class NP:

• $A \rightarrow B$ here means $A \leq_p B$.

• Sets in NP – P might not be totally ordered by \leq_p: we might have A, B with neither $A \leq_p B$ nor $B \leq_p A$:
NP-Completeness

• Some languages in NP are hardest, in the sense that every language in NP is \leq_p-reducible to them.
• Call these NP-complete.
• Definition: Language B is NP-complete if both of the following hold:
 (a) $B \in NP$, and
 (b) For any language $A \in NP$, $A \leq_p B$.

• Sometimes, we consider languages that aren’t, or might not be, in NP, but to which all NP languages are reducible.
• Call these NP-hard.
• Definition: Language B is NP-hard if, for any language $A \in NP$, $A \leq_p B$.
NP-Completeness

• Today, and next time, we’ll:
 – Give examples of interesting problems that are NP-complete, and
 – Develop methods for showing NP-completeness.

• Theorem: ∃B, B is NP-complete.
 – There is at least one NP-complete problem.
 – We’ll show this later.

• Theorem: If A, B, are NP-complete, then A \leq_p B.
 – Two NP-complete problems are essentially equivalent (up to \leq_p).

• Proof: A ∈ NP, B is NP-hard, so A \leq_p B by definition.
NP-Completeness

• **Theorem:** If some NP-complete language is in P, then P = NP.
 – That is, if a polynomial-time algorithm exists for any NP-complete problem, then the entire class NP collapses into P.
 – Polynomial algorithms immediately arise for all problems in NP.

• **Proof:**
 – Suppose B is NP-complete and \(B \in P \).
 – Let A be any language in NP; show \(A \in P \).
 – We know \(A \leq_p B \) since B is NP-complete.
 – Then \(A \in P \), since \(B \in P \) and “easiness propagates downward”.
 – Since every A in NP is also in P, \(NP \subseteq P \).
 – Since \(P \subseteq NP \), it follows that \(P = NP \).
NP-Completeness

- **Theorem:** The following are equivalent.
 1. $P = NP$.
 2. Every NP-complete language is in P.
 3. Some NP-complete language is in P.

- **Proof:**
 1 \Rightarrow 2:
 - Assume $P = NP$, and suppose that B is NP-complete.
 - Then $B \in NP$, so $B \in P$, as needed.

 2 \Rightarrow 3:
 - Immediate because there is at least NP-complete language.

 3 \Rightarrow 1:
 - By the previous theorem.
Beliefs about P vs. NP

• Most theoretical computer scientists believe $P \neq NP$.
• Why?
 • Many interesting NP-complete problems have been discovered over the years, and many smart people have tried to find fast algorithms; no one has succeeded.
 • The problems have arisen in many different settings, including logic, graph theory, number theory, operations research, games and puzzles.
 • Entire book devoted to them [Garey, Johnson].
 • All these problems are essentially the same since all NP-complete problems are polynomial-reducible to each other.
 • So essentially the same problem has been studied in many different contexts, by different groups of people, with different backgrounds, using different methods.
Beliefs about P vs. NP

• Most theoretical computer scientists believe $P \neq NP$.
• Because many smart people have tried to find fast algorithms and no one has succeeded.
• That doesn’t mean $P \neq NP$; this is just some kind of empirical evidence.
• The essence of why NP-complete problems seem hard:
 – They have NP structure:
 $$x \in L \iff (\exists c, |c| \leq p(|x|) \land [V(x, c) \text{ accepts}],$$
 where V is poly-time.
 – Guess and verify.
 – Seems to involve exploring a tree of possible choices, exponential blowup.
• However, no one has yet succeeded in proving that they actually are hard!
 – We don’t have sharp enough methods.
 – So in the meantime, we just show problems are NP-complete.
Satisfiability is NP-Complete
Satisfiability is NP-Complete

• \(\text{SAT} = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \} \)

• Definition: (Boolean formula):
 – Variables: \(x, x_1, x_2, \ldots, y, \ldots, z, \ldots \)
 • Can take on values 1 (true) or 0 (false).
 – Literal: A variable or its negated version: \(x, \neg x, \neg x_1, \ldots \)
 – Operations: \(\land \lor \neg \)
 – Boolean formula: Constructed from literals using operations, e.g.:
 \[
 \phi = x \land ((y \land z) \lor (\neg y \land \neg z)) \land \neg (x \land z)
 \]

• Definition: (Satisfiability):
 – A Boolean formula is satisfiable iff there is an assignment of 0s and 1s to the variables that makes the entire formula evaluate to 1 (true).
Satisfiability is NP-Complete

- SAT = \{ < \phi > \mid \phi \text{ is a satisfiable Boolean formula} \}
- **Boolean formula**: Constructed from literals using operations, e.g.:
 \[\phi = x \land ((y \land z) \lor (\neg y \land \neg z)) \land \neg (x \land z) \]
- A Boolean formula is satisfiable iff there is an assignment of 0s and 1s to the variables that makes the entire formula evaluate to 1 (true).
- **Example**: \(\phi \) above
 - Satisfiable, using the assignment \(x = 1, y = 0, z = 0 \).
 - So \(\phi \in \text{SAT} \).
- **Example**: \(x \land ((y \land z) \lor (\neg y \land z)) \land \neg (x \land z) \)
 - Not in SAT.
 - \(x \) must be set to 1, so \(z \) must = 0.
Satisfiability is NP-Complete

- SAT = \{ < \phi > | \phi \text{ is a satisfiable Boolean formula} \}
- Theorem: SAT is NP-complete.
- Lemma 1: SAT ∈ NP.
- Lemma 2: SAT is NP-hard.
- Proof of Lemma 1:
 - Recall: L ∈ NP if and only if (∃ V, poly-time verifier) (∃ p, poly)
 \[x \in L \iff (\exists c, |c| \leq p(|x|)) \left[V(x, c) \text{ accepts} \right] \]
 - So, to show SAT ∈ NP, it’s enough to show (∃ V) (∃ p)
 \[\phi \in \text{SAT} \iff (\exists c, |c| \leq p(|x|)) \left[V(\phi, c) \text{ accepts} \right] \]
 - We know: \(\phi \in \text{SAT} \iff \) there is an assignment to the variables such that \(\phi \) with this assignment evaluates to 1.
 - So, let certificate c be the assignment.
 - Let verifier V take a formula \(\phi \) and an assignment c and accept exactly if \(\phi \) with c evaluates to true.
 - Evaluate \(\phi \) bottom-up, takes poly time.
Satisfiability is NP-Complete

• Lemma 2: SAT is NP-hard.
• Proof of Lemma 2:
 – Need to show that, for any \(A \in \text{NP} \), \(A \leq_p \text{SAT} \).
 – Fix \(A \in \text{NP} \).
 – Construct a poly-time \(f \) such that
 \[
 w \in A \text{ if and only if } f(w) \in \text{SAT}.
 \]
 – By definition, since \(A \in \text{NP} \), there is a nondeterministic TM \(M \) that decides \(A \) in polynomial time.
 – Fix polynomial \(p \) such that \(M \) on input \(w \) always halts, on all branches, in time \(\leq p(|w|) \); assume \(p(|w|) \geq |w| \).
 – \(w \in A \) if and only if there is an accepting computation history (CH) of \(M \) on \(w \).
Satisfiability is NP-Complete

- Lemma 2: SAT is NP-hard.
- Proof, cont’d:
 - Need \(w \in A \) if and only if \(f(w) (= \phi_w) \in \text{SAT} \).
 - \(w \in A \) if and only if there is an accepting CH of \(M \) on \(w \).
 - So we must construct formula \(\phi_w \) to be satisfiable iff there is an accepting CH of \(M \) on \(w \).
 - Recall definitions of computation history and accepting computation history from Post Correspondence Problem:
 \[\#, C_0 \#, C_1 \#, C_2 \ldots \]
 - Configurations include tape contents, state, head position.
 - We construct \(\phi_w \) to describe an accepting CH.
 - Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}}) \) as usual.
 - Instead of lining up configs in a row as before, arrange in \((p(|w|) + 1 \) row \(\times \) \(p(|w|) + 3 \)) column matrix:
Proof that SAT is NP-hard

• \(\phi_w \) will be satisfiable iff there is an accepting CH of M on \(w \).
• Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}}) \).
• Arrange configs in \((p(|w|) + 1) \times (p(|w|) + 3)\) matrix:

 \[
 \begin{array}{ccccccc}
 \# & q_0 & w_1 & w_2 & w_3 & \ldots & w_n & \# \\
 \# & \ldots & & & & \ldots & & \# \\
 \# & \ldots & & & & \ldots & & \# \\
 \vdots & & & & & & & \vdots \\
 \# & \ldots & & & & \ldots & & \# \\
 \end{array}
 \]

• Successive configs, ending with accepting config.
• Assume WLOG that each computation takes exactly \(p(|w|) \) steps, so we use \(p(|w|) + 1 \) rows.
• \(p(|w|) + 3 \) columns: \(p(|w|) \) for the interesting portion of the tape, one for head and state, two for endmarkers.
Proof that SAT is NP-hard

- ϕ_w is satisfiable iff there is an accepting CH of M on w.
- Entries in the matrix are represented by Boolean variables:
 - Define $\mathbf{C} = Q \cup \Gamma \cup \{\#\}$, alphabet of possible matrix entries.
 - Variable $x_{i,j,c}$ represents “the entry in position (i, j) is c”.
- Define ϕ_w as a formula over these $x_{i,j,c}$ variables, satisfiable if and only if there is an accepting computation history for w (in matrix form).
- Moreover, an assignment of values to the $x_{i,j,c}$ variables that satisfies ϕ_w will correspond to an encoding of an accepting computation.
- Specifically, $\phi_w = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$, where:
 - ϕ_{cell}: There is exactly one value in each matrix location.
 - ϕ_{start}: The first row represents the starting configuration.
 - ϕ_{accept}: The last row is an accepting configuration.
 - ϕ_{move}: Successive rows represent allowable moves of M.
\(\phi_{\text{cell}} \)

- For each position \((i,j)\), write the conjunction of two formulas:
 - \(\bigvee_{c \in C} x_{i,j,c} \): Some value appears in position \((i,j)\).
 - \(\bigwedge_{c, d \in C, c \neq d} (\neg x_{i,j,c} \vee \neg x_{i,j,d}) \): Position \((i,j)\) doesn’t contain two values.

- \(\phi_{\text{cell}} \): Conjoin formulas for all positions \((i,j)\).

- Easy to construct the entire formula \(\phi_{\text{cell}} \) given \(w \) input.
- Construct it in polynomial time.
- Sanity check: Length of formula is polynomial in \(|w|\):
 - \(O\left(p(|w|)^2 \right) \) subformulas, one for each \((i,j)\).
 - Length of each subformula depends on \(C \), \(O\left(|C|^2\right) \).
\[\phi_{\text{start}} \]

• The right symbols appear in the first row:

\[
\begin{array}{cccccccc}
& q_0 & w_1 & w_2 & w_3 & \cdots & w_n & -- & -- & \cdots & -- & -- & # \\
\end{array}
\]

\[\phi_{\text{start}}: x_{1,1},# \wedge x_{1,2},q_0 \wedge x_{1,3},w_1 \wedge x_{1,4},w_2 \wedge \cdots \]

\[
\wedge x_{1,n+2},w_n \wedge x_{1,n+3},-- \wedge \cdots
\]

\[
\wedge x_{1,p(n)+2},-- \wedge x_{1,p(n)+3},#
\]
\(\phi_{\text{accept}} \)

- For each \(j \), \(2 \leq j \leq p(|w|) + 2 \), write the formula:

\[
x_{p(|w|)+1,j,q_{\text{acc}}}
\]

- \(q_{\text{acc}} \) appears in position \(j \) of the last row.
- \(\phi_{\text{accept}} \): Take disjunction (or) of all formulas for all \(j \).
- That is, \(q_{\text{acc}} \) appears in some position of the last row.
• As for PCP, correct moves depend on correct changes to local portions of configurations.

• It’s enough to consider 2×3 rectangles:

• If every 2×3 rectangle is “good”, i.e., consistent with the transitions, then the entire matrix represents an accepting CH.

• For each position (i,j), $1 \leq i \leq p(|w|)$, $1 \leq j \leq p(|w|)+1$, write a formula saying that the rectangle with upper left at (i,j) is “good”.

• Then conjoin all of these, $O(p(|w|)^2)$ clauses.

• Good tiles for (i,j), for a, b, c in Γ:

\[
\begin{array}{ccc}
 a & b & c \\
 a & b & c \\
 \# & a & b \\
 \# & a & b \\
 a & b & \# \\
 a & b & \#
\end{array}
\]
• Other good tiles are defined in terms of the nondeterministic transition function δ.
• E.g., if $\delta(q_1, a)$ includes tuple (q_2, b, L), then the following are good:
 – Represents the move directly; for any c:
 – Head moves left out of the rectangle; for any c, d:
 – Head is just to the left of the rectangle; for any c, d:
 – Head at right; for any c, d, e:
 – And more, for #, etc.
• Analogously if $\delta(q_1, a)$ includes (q_2, b, R).
• Since M is nondeterministic, $\delta(q_1, a)$ may contain several moves, so include all the tiles.
• The good tiles give partial constraints on the computation.
• When taken together, they give enough constraints so that only a correct CH can satisfy them all.
• The part (conjunct) of ϕ_{move} for (i,j) should say that the rectangle with upper left at (i,j) is good:
• It is simply the disjunction (or), over all allowable tiles, of the subformula:

\[
x_{i,j,a1} \land x_{i,j+1,a2} \land x_{i,j+2,a3} \land x_{i+1,j,b1} \land x_{i+1,j+1,b2} \land x_{i+1,j+2,b3}
\]

• Thus, ϕ_{move} is the conjunction over all (i,j), of the disjunction over all good tiles, of the formula just above.
\(\phi_{\text{move}} \)

- \(\phi_{\text{move}} \) is the conjunction over all \((i,j)\), of the disjunction over all good tiles, of the given six-term conjunctive formula.

- **Q:** How big is the formula \(\phi_{\text{move}} \)?
- \(O(p(|w|)^2) \) clauses, one for each \((i,j)\) pair.
- Each clause is only constant length, \(O(1) \).
 - Because machine M yields only a constant number of good tiles.
 - And there are only 6 terms for each tile.

- Thus, length of \(\phi_{\text{move}} \) is polynomial in \(|w|\).
- \(\phi_w = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}} \), length also poly in \(|w|\).
ϕ_{move}

- $\phi_w = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$, length poly in $|w|$.
- More importantly, can produce ϕ_w from w in time that is polynomial in $|w|$.
- $w \in A$ if and only if M has an accepting CH for w if and only if ϕ_w is satisfiable.
- Thus, $A \leq_p \text{SAT}$.
- Since A was any language in NP, this proves that SAT is NP-hard.
- Since SAT is in NP and is NP-hard, SAT is NP-complete.
Next time…

• NP-completeness---more examples
• **Reading:**
 – Sipser Sections 7.4-7.5