6.045: Automata, Computability, and Complexity (GITCS)

Class 16
Nancy Lynch
Today: More NP-Completeness

• Topics:
 – 3SAT is NP-complete
 – Clique and VertexCover are NP-complete
 – More examples, overview
 – Hamiltonian path and Hamiltonian circuit
 – Traveling Salesman problem
 – More examples, revisited

• Reading:
 – Sipser Sections 7.4-7.5
 – Garey and Johnson

• Next:
 – Sipser Section 10.2
3SAT is NP-Complete
NP-Completeness

• **Definition:** Language B is **NP-complete** if both of the following hold:
 (a) $B \in \text{NP}$, and
 (b) For any language $A \in \text{NP}$, $A \leq_p B$.

• **Definition:** Language B is **NP-hard** if, for any language $A \in \text{NP}$, $A \leq_p B$.
3SAT is NP-Complete

- SAT = \{ < \phi > \mid \phi \text{ is a satisfiable Boolean formula} \}
- **Boolean formula**: Constructed from literals using operations, e.g.:
 \[\phi = x \land ((y \land z) \lor (\lnot y \land \lnot z)) \land \lnot (x \land z) \]
- A Boolean formula is satisfiable iff there is an assignment of 0s and 1s to the variables that makes the entire formula evaluate to 1 (true).
- **Theorem**: SAT is NP-complete.
- **3SAT**: Satisfiable Boolean formulas of a restricted kind---conjunctive normal form (CNF) with exactly 3 literals per clause.
- **Theorem**: 3SAT is NP-complete.
- **Proof**:
 - 3SAT ∈ NP: Obvious.
 - 3SAT is NP-hard: ...
3SAT is NP-hard

• **Clause:** Disjunction of literals, e.g., \((\neg x_1 \lor x_2 \lor \neg x_3)\)
• **CNF:** Conjunction of such clauses
• **Example:**
 \[
 (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2 \lor \neg x_3) \land (x_3)
 \]
• **3-CNF:**
 \[
 \{ < \phi > | \phi \text{ is a CNF formula in which each clause has exactly 3 literals} \}
 \]
• **CNF-SAT:** \[
 \{ < \phi > | \phi \text{ is a satisfiable CNF formula} \}
 \]
• **3-SAT:** \[
 \{ < \phi > | \phi \text{ is a satisfiable 3-CNF formula} \}
 = \text{SAT} \cap 3-\text{CNF}
 \]
• **Theorem:** 3SAT is NP-hard.
• **Proof:** Show CNF-SAT is NP-hard, and CNF-SAT \(\leq_p 3\text{SAT}\).
CNF-SAT is NP-hard

• Theorem: CNF-SAT is NP-hard.
• Proof:
 – We won’t show SAT \(\leq_p \) CNF-SAT.
 – Instead, modify the proof that SAT is NP-hard, so that it shows A \(\leq_p \) CNF-SAT, for an arbitrary A in NP, instead of just A \(\leq_p \) SAT as before.
 – We’ve almost done this: formula \(\phi_w \) is almost in CNF.
 – It’s a conjunction \(\phi_w = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}} \).
 – And each of these is itself in CNF, except \(\phi_{\text{move}} \).
 – \(\phi_{\text{move}} \) is:
 • a conjunction over all (i,j)
 • of disjunctions over all tiles
 • of conjunctions of 6 conditions on the 6 cells:
 \[
 x_{i,j,a1} \land x_{i,j+1,a2} \land x_{i,j+2,a3} \land x_{i+1,j,b1} \land x_{i+1,j+1,b2} \land x_{i+1,j+2,b3}
 \]
CNF-SAT is NP-hard

- Show $A \leq_p \text{CNF-SAT}$.
- ϕ_w is a conjunction $\phi_w = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$, where each is in CNF, except ϕ_{move}.
- ϕ_{move} is:
 - a conjunction (\land) over all (i,j)
 - of disjunctions (\lor) over all tiles
 - of conjunctions (\land) of 6 conditions on the 6 cells:
 $\phi_{\text{move}} = x_{i,j,a1} \land x_{i,j+1,a2} \land x_{i,j+2,a3} \land x_{i+1,j,b1} \land x_{i+1,j+1,b2} \land x_{i+1,j+2,b3}$
- We want just \land of \lor.
- Can use distributive laws to replace (\lor of \land) with (\land of \lor), which would yield overall \land of \lor, as needed.
- In general, transforming (\lor of \land) to (\land of \lor), could cause formula size to grow too much (exponentially).
- However, in this situation, the clauses for each (i,j) have total size that depends only on the TM M, and not on w.
- So the size of the transformed formula is still poly in $|w|$.
CNF-SAT is NP-hard

- Theorem: CNF-SAT is NP-hard.
- Proof:
 - Modify the proof that SAT is NP-hard.
 - $\phi_w = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$.
 - Can be put into CNF, while keeping the size of the transformed formula poly in $|w|$.
 - Shows that $A \leq_p \text{CNF-SAT}$.
 - Since A is any language in NP, CNF-SAT is NP-hard.
3SAT is NP-hard

• Proved: Theorem: CNF-SAT is NP-hard.
• Now: Theorem: 3SAT is NP-hard.
• Proof:
 – Use reduction, show CNF-SAT \leq_p 3SAT.
 – Construct f, polynomial-time computable, such that $w \in$ CNF-SAT if and only if $f(w) \in$ 3SAT.
 – If w isn’t a CNF formula, then $f(w)$ isn’t either.
 – If w is a CNF formula, then $f(w)$ is another CNF formula, this one with 3 literals per clause, satisfiable iff w is satisfiable.
 – f works by converting each clause to a conjunction of clauses, each with ≤ 3 literals (add repeats to get 3).
 – Show by example: $(a \lor b \lor c \lor d \lor e)$ gets converted to $(a \lor r_1) \land (\neg r_1 \lor b \lor r_2) \land (\neg r_2 \lor c \lor r_3) \land (\neg r_3 \lor d \lor r_4) \land (\neg r_4 \lor e)$
 – f is polynomial-time computable.
3SAT is NP-hard

• Proof:
 – Show CNF-SAT \leq_p 3SAT.
 – Construct f such that $w \in$ CNF-SAT iff $f(w) \in$ 3SAT; converts each clause to a conjunction of clauses.
 – f converts $w = (a \lor b \lor c \lor d \lor e)$ to $f(w) =$
 $$(a \lor r_1) \land (\neg r_1 \lor b \lor r_2) \land (\neg r_2 \lor c \lor r_3) \land (\neg r_3 \lor d \lor r_4) \land (\neg r_4 \lor e)$$
 – Claim w is satisfiable iff $f(w)$ is satisfiable.

• \Rightarrow:
 – Given a satisfying assignment for w, add values for r_1, r_2, \ldots, to satisfy $f(w)$.
 – Start from a clause containing a literal with value 1---there must be one---make the new literals in that clause 0 and propagate consequences left and right.
 – Example: Above, if $c = 1, a = b = d = e = 0$ satisfy w, use:
 $$f(w) = (a \lor r_1) \land (\neg r_1 \lor b \lor r_2) \land (\neg r_2 \lor c \lor r_3) \land (\neg r_3 \lor d \lor r_4) \land (\neg r_4 \lor e)$$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3SAT is NP-hard

• Proof:
 – Show CNF-SAT \leq_p 3SAT.
 – Construct f such that \(w \in \text{CNF-SAT} \) iff \(f(w) \in 3\text{SAT} \);
 converts each clause to a conjunction of clauses.
 – f converts \(w = (a \lor b \lor c \lor d \lor e) \) to \(f(w) = (a \lor r_1) \land (\neg r_1 \lor b \lor r_2) \land (\neg r_2 \lor c \lor r_3) \land (\neg r_3 \lor d \lor r_4) \land (\neg r_4 \lor e) \)
 – Claim \(w \) is satisfiable iff \(f(w) \) is satisfiable.

• \(\iff \):
 – Given satisfying assignment for \(f(w) \), restrict to satisfy \(w \).
 – Each \(r_i \) can make only one clause true.
 – There’s one fewer \(r_i \) than clauses; so some clause must
 be made true by an original literal, i.e., some original
 literal must be true, satisfying \(w \).
3SAT is NP-hard

- **Theorem:** CNF-SAT is NP-hard.
- **Theorem:** 3SAT is NP-hard.
- **Proof:**
 - Constructed polynomial-time-computable f such that $w \in \text{CNF-SAT}$ iff $f(w) \in \text{3SAT}$.
 - Thus, $\text{CNF-SAT} \leq_p \text{3SAT}$.
 - Since CNF-SAT is NP-hard, so is 3SAT.
CLIQUE and VERTEX-COVER are NP-Complete
CLIQUE and VERTEX-COVER

- **CLIQUE** = \{ < G, k > | G is a graph with a k-clique \}
- **k-clique**: k vertices with edges between all pairs in the clique.
- **Theorem**: CLIQUE is NP-complete.
- **Proof**:
 - CLIQUE ∈ NP, already shown.
 - To show CLIQUE is NP-hard, show 3SAT ≤₁ CLIQUE.
 - Need poly-time-computable f, such that w ∈ 3SAT iff f(w) ∈ CLIQUE.
 - f must map a formula w in 3-CNF to <G, k> such that w is satisfiable iff G has a k-clique.
 - Show by example:
 \((x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)\)
CLIQUE is NP-hard

• Proof:
 – Show $3\text{SAT} \leq_p \text{CLIQUE}$; construct f such that $w \in 3\text{SAT}$ iff $f(w) \in \text{CLIQUE}$.
 – f maps a formula w in 3-CNF to $<G, k>$ such that w is satisfiable iff G has a k-clique.
 – $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$
 – **Graph G**: Nodes for all (clause, literal) pairs, edges between all non-contradictory nodes in different clauses.
 – k: Number of clauses
CLIQUE is NP-hard

- **Graph G**: Nodes for all (clause, literal) pairs, edges between all non-contradictory nodes in different clauses.
- **k**: Number of clauses
 \[(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)\]
- **Claim (general)**: w satisfiable iff G has a k-clique.

⇒:
- Assume the formula is satisfiable.
- Satisfying assignment gives one literal in each clause, all with non-contradictory assignments.
- Yields a k-clique.
CLIQUE is NP-hard

• Example:

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$$

• Satisfiable, with satisfying assignment $x_1 = 1$, $x_2 = x_3 = 0$

• Yields 3-clique:

• \Rightarrow:

 – Assume the formula is satisfiable.

 – Satisfying assignment gives one literal in each clause, all with non-contradictory assignments.

 – Yields a k-clique.
CLIQUE is NP-hard

- **Graph G:** Nodes for all (clause, literal) pairs, edges between all non-contradictory nodes in different clauses.
- **k:** Number of clauses
 \[(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)\]
- **Claim (general):** \(w\) satisfiable iff \(G\) has a \(k\)-clique.
- \(\Longleftarrow:\)
 - Assume a \(k\)-clique.
 - Yields one node per clause, none contradictory.
 - Yields a consistent assignment satisfying all clauses of \(w\).
CLIQUE is NP-hard

• **Graph G**: Nodes for all (clause, literal) pairs, edges between all non-contradictory nodes in different clauses.
• **k**: Number of clauses
• **Claim (general)**: \(w \) satisfiable iff \(G \) has a \(k \)-clique.

• So, 3SAT \(\leq_p \) CLIQUE.
• Since 3SAT is NP-hard, so is CLIQUE.
• So CLIQUE is NP-complete.
VERTEX-COVER is NP-complete

- **VERTEX-COVER** =
 \[
 \{ < G, k > \mid G \text{ is a graph with a vertex cover of size } k \}
 \]
- Vertex cover of \(G = (V, E) \): A subset \(C \) of \(V \) such that, for every edge \((u,v) \) in \(E \), either \(u \) or \(v \) \(\in \) \(C \).
- **Theorem:** VERTEX-COVER is NP-complete.
- **Proof:**
 - VERTEX-COVER \(\in \) NP, already shown.
 - Show VERTEX-COVER is NP-hard.
 - That is, if \(A \in \) NP, then \(A \leq_p \) VERTEX-COVER.
 - We know \(A \leq_p \) CLIQUE, since CLIQUE is NP-hard.
 - Recall CLIQUE \(\leq_p \) VERTEX-COVER.
 - By transitivity of \(\leq_p \), \(A \leq_p \) VERTEX-COVER, as needed.
VERTEX-COVER is NP-complete

- **Theorem**: VERTEX-COVER is NP-complete.

- **More succinct proof**:
 - $VC \in NP$; show VC is NP-hard.
 - CLIQUE is NP-hard.
 - CLIQUE $\leq_p VC$.
 - So VC is NP-hard.

- **In general**, can show language B is NP-complete by:
 - Showing $B \in NP$, and
 - Showing $A \leq_p B$ for some known NP-hard problem A.
More Examples
More NP-Complete Problems

- [Garey, Johnson] show hundreds of problems are NP-complete.
- All but 3SAT use the polynomial-time reduction method.
- Examples:
 - 3SAT
 - CLIQUE
 - HAMILTONIAN PATH/CIRCUIT
 - VERTEX-COVER
 - TRAVELING SALESMAN
 - SET PARTITION
 - SUBSET-SUM
 - MULTIPROCESSOR SCHEDULING
 - Etc.
More NP-Complete Problems

- \(A \rightarrow B \) means \(A \leq_p B \).
- Hardness propagates to the right in \(\leq_p \), downward along tree branches.

As we just showed.

Will do this now.

Recitation?
$3\text{SAT} \leq_p \text{HAMILTONIAN PATH/CIRCUIT}$
3SAT \leq_p HAMILTONIAN PATH/CIRCUIT

- Two versions of the problem, for directed and undirected graphs.
- Consider directed version; undirected shown by reduction from directed version.
- **DHAMPATH** = \{ <G, s, t> | G is a directed graph, s and t are two distinct vertices, and there is a path from s to t in G that passes through each vertex of G exactly once \}
- **DHAMPATH** \in NP: Guess path and verify.
- **3SAT \leq_p DHAMPATH**:

![Diagram](image)

3CNF

3SAT

Digraph, s,t

DHAMPATH
3SAT \leq_p HAMILTONIAN PATH/CIRCUIT

- DHAMPATH = \{ <G, s, t> | G is a directed graph, s and t are two distinct vertices, and there is a path from s to t in G that passes through each vertex of G exactly once \}

- 3SAT \leq_p DHAMPATH:
 - Map a 3CNF formula ϕ to <G, s, t> so that ϕ is satisfiable if and only if G has a Hamiltonian path from s to t.
 - In fact, there will be a direct correspondence between a satisfying assignment for ϕ and a Hamiltonian path in G.
3SAT \leq_p DHAMPATH

- Map a 3CNF formula ϕ to $<G, s, t>$ so that ϕ is satisfiable if and only if G has a Hamiltonian path from s to t.
- Correspondence between satisfying assignment for ϕ and Hamiltonian path in G.

Notation:
- Write $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \ldots \land (a_k \lor b_k \lor c_k)$
- k clauses C_1, C_2, \ldots, C_k
- Variables: x_1, x_2, \ldots, x_l
- Each a_j, b_j, and c_j is either some x_i or some $\neg x_i$.

- Digraph is constructed from pieces (gadgets), one for each variable x_i and one for each clause C_j.
- **Gadget for variable x_i:**

```
Row contains 3k+1 nodes, not counting endpoints.
```
3SAT \leq_p DHAMPATH

• Notation:
 – $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \ldots \land (a_k \lor b_k \lor c_k)$
 – k clauses C_1, C_2, \ldots, C_k
 – Variables: x_1, x_2, \ldots, x_l
 – Each $a_j, b_j,$ and c_j is either some x_i or some $\neg x_i$.

• Gadget for variable x_i:

• Can get from top node to bottom node in two ways:

• Both ways visit all intermediate nodes.
3SAT \leq_p DHAMPATH

- Notation:
 - $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \ldots \land (a_k \lor b_k \lor c_k)$
 - k clauses C_1, C_2, \ldots, C_k
 - Variables: x_1, x_2, \ldots, x_l
 - Each a_j, b_j, and c_j is either some x_i or some $\neg x_i$.

- Gadget for variable x_i:

- Gadget for clause C_j:
 - Just a single node.

- Putting the pieces together:
 - Put variables’ gadgets in order x_1, x_2, \ldots, x_l, top to bottom, identifying bottom node of each gadget with top node of the next.
 - Make s and t the overall top and bottom node, respectively
3SAT \leq_p DHAMPATH

• Putting the pieces together:
 – Put variables’ gadgets in order x_1, x_2, \ldots, x_l, identifying bottom node of each with top node of the next.
 – Make s and t the overall top and bottom node.

• We still must connect x-gadgets with C-gadgets.
3SAT \leq_p DHAMPATH

- We still must connect x-gadgets with C-gadgets.
- Divide the $3k+1$ nodes in the cross-bar of x_i’s gadget into k pairs, one per clause, separated by $k+1$ separator nodes:

- If x_i appears in C_j, add edges between the C_j node and the nodes for C_j in the crossbar, going from left to right.
 - Allows detour to C_j while traversing crossbar left-to-right.
3SAT \leq_p DHAMPATH

- If x_i appears in C_j, add edges L to R.
 - Allows detour to C_j while traversing crossbar L to R.

- If $\neg x_i$ appears in C_j, add edges R to L.
 - Allows detour to C_j while traversing crossbar R to L.

- If both x_i and $\neg x_i$ appear, add both sets of edges.
- This completes the construction of G, s, t.
Example

- $\phi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$
Example

- \(\phi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land \ldots \land (\neg x_1 \lor x_2 \lor \neg x_3) \)
$\phi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land \ldots \land (\neg x_1 \lor x_2 \lor \neg x_3)$
The entire graph G

- $\phi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land \ldots \land (\neg x_1 \lor x_2 \lor \neg x_3)$
3SAT \leq_P DHAMPATH

- **Claim:** ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.

- **Proof:** \implies
 - Assume ϕ is satisfiable; fix a particular satisfying assignment.
 - Follow path top-to-bottom, going
 - L to R through gadgets for x_is that are set true.
 - R to L through gadgets for x_is that are set false.
 - This visits all nodes of G except the C_j nodes.
 - For these, we must take detours.
 - For any particular clause C_j:
 - At least one of its literals must be set true; pick one.
 - If it’s of the form x_i, then do:
 - Works since $x_i = \text{true}$ means we traverse this crossbar L to R.
3SAT \leq_p DHAMPATH

• **Claim:** ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.

• **Proof:** \Rightarrow
 – Assume ϕ is satisfiable; fix a particular satisfying assignment.
 – Follow path top-to-bottom, going
 • L to R through gadgets for x_is that are set true.
 • R to L through gadgets for x_is that are set false.
 – This visits all nodes of G except the C_j nodes.
 – For these, we must take detours.
 – For any particular clause C_j:
 • At least one of its literals must be set true; pick one.
 • If it’s of the form $-x_i$, then do:
 • Works since $x_i = \text{false}$ means we traverse this crossbar R to L.
3SAT \leq_p DHAMPATH

- **Claim:** ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.

- **Proof:** \iff
 - Assume G has a Hamiltonian path from s to t, get a satisfying assignment for ϕ.
 - If the path is "normal" (goes in order through the gadgets, top to bottom, going one way or the other through each crossbar, and detouring to pick up the C_j nodes), then define the assignment by:
 - Set each x_i true if path goes L to R through x_i’s gadget, false if it goes R to L.
 - Why is this a satisfying assignment for ϕ?
 - Consider any clause C_j.
 - The path goes through its node in one of two ways:

- [Diagram of C_j and C_j pairs in x_i row]
3SAT \leq_p DHAMPATH

- **Claim:** ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.
- **Proof:** \Leftarrow
 - Assume G has a Hamiltonian path from s to t, get a satisfying assignment for ϕ.
 - If the path is “normal”, then define the assignment by:
 - Set each x_i true if path goes L to R through x_i’s gadget, false if it goes R to L.

 - To see that this satisfies ϕ, consider any clause C_j.
 - The path goes through C_j’s node by:
 - If the first, then:
 - x_i is true, since path goes L-R.
 - By the way the detour edges are set, C_j contains literal x_i.
 - So C_j is satisfied by x_i.

C_j pair in x_i row

C_j pair in x_i row
3SAT \leq_p DHAMPATH

- **Claim:** ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.
- **Proof:** \Leftarrow
 - Assume G has a Hamiltonian path from s to t, get a satisfying assignment for ϕ.
 - If the path is “normal”, then define the assignment by:
 - Set each x_i true if path goes L to R through x_i’s gadget, false if it goes R to L.
 - To see that this satisfies ϕ, consider any clause C_j.
 - The path goes through C_j’s node by:
 - If the second, then:
 - x_i is false, since path goes R-L.
 - By the way the detour edges are set, C_j contains literal $\neg x_i$.
 - So C_j is satisfied by $\neg x_i$.

![Diagram](image)
3SAT \leq_p DHAMPATH

• **Claim:** ϕ is satisfiable iff the graph G has a Hamiltonian path from s to t.

• **Proof:** \Leftarrow

 – Assume G has a Hamiltonian path from s to t.
 – If the path is normal, then it yields a satisfying assignment.
 – **It remains to show that the path is normal** (goes in order through the gadgets, top to bottom, going one way or the other through each crossbar, and detouring to pick up the C_j nodes),
 – The only problem (hand-waving) is if a detour doesn’t work right, but jumps from one gadget to another, e.g.:
 – But then the Ham. path could never reach a_2:
 • Can reach a_2 only from a_1, a_3, and (possibly) C_j.
 • But a_1 and C_j already lead elsewhere.
 • And reaching a_2 from a_3 leaves nowhere to go from a_2, stuck.
Summary: DHAMPATH

• We have proved 3SAT \leq_p DHAMPATH.
• So DHAMPATH is NP-complete.
• Can prove similar result for DHAMCIRCUIT = \{ <G> | G is a directed graph, and there is a circuit in G that passes through each vertex of G exactly once \}
• Theorem: 3SAT \leq_p DHAMCIRCUIT.
• Proof:
 – Same construction, but wrap around, identifying s and t nodes.
 – Now a satisfying assignment for ϕ corresponds to a Hamiltonian circuit.

Identify these two s nodes.
UHAMPATH and UHAMCIRCUIT

• Same questions about paths/circuits in undirected graphs.
• **UHAMPATH** = \{ <G, s, t> | G is an undirected graph, s and t are two distinct vertices, and there is a path from s to t in G that passes through each vertex of G exactly once \}
• **UHAMCIRCUIT** = \{ <G> | G is an undirected graph, and there is a circuit in G that passes through each vertex of G exactly once \}
• **Theorem:** Both are NP-complete.
• Obviously in NP.
• To show NP-hardness, reduce the digraph versions of the problems to the undirected versions---no need to consider Boolean formulas again.
 – DHAMPATH ≤ₚ UHAMPATH
 – DHAMCIRCUIT ≤ₚ UHAMCIRCUIT
DHAMPATH \leq_p UHAMPATH

- UHAMPATH = \{ <G, s, t> | G is an undirected graph, s and t are two distinct vertices, and there is a path from s to t in G that passes through each vertex of G exactly once \}
- Map <G, s, t> (directed) to <G', s', t'> (undirected) so that <G, s, t> \in DHAMPATH iff <G', s', t'> \in UHAMPATH.
- Example:
DHAMPATH \leq_p UHAMPATH

- In general:
 - Replace each vertex x other than s, t with vertices x_1, x_2, x_3, connected in a line.
 - Replace s with just s_3, t with just t_1.
 - For each directed edge from x to y in G, except incoming edges of s and outgoing edges of t, include undirected edge between x_3 and y_1.
 - Don’t include anything for incoming edges of s or outgoing edges of t---not needed since they can’t be part of a Ham. path in G from s to t.
In general:
- Replace each vertex x other than s, t with x_1---x_2---x_3.
- Replace s with s_3, t with t_1.
- For each directed edge from x to y in G, except incoming edges of s and outgoing edges of t, include x_3---y_1.

$\text{Claim } G \text{ has directed Hamiltonian path from } s \text{ to } t \text{ iff } G' \text{ has an undirected Hamiltonian path from } s' \text{ to } t'$.

Idea: Indices 1,2,3 enforce consistent direction of traversal.

Summary: UHAMPATH

- We have proved DHAMPATH \leq_p UHAMPATH.
- So UHAMPATH is NP-complete.
- Can prove similar result for
 \textbf{UHAMCIRCUIT} = \{ <G> | G is an undirected graph, and there is a circuit in G that passes through each vertex of G exactly once \}
- **Theorem:** DHAMCIRCUIT \leq_p UHAMCIRCUIT.
- **Proof:**
 - Similar construction.
The Traveling Salesman Problem
Traveling Salesman Problem (TSP)

- Variant of UHAMCIRCUIT.
- n cities = vertices, in a complete (undirected) graph.
- Each edge (u,v) has a cost, $c(u,v)$, a nonnegative integer.
- Salesman should visit all cities, each just once, at low cost.
- Express as a language:
 \[
 \text{TSP} = \{ <G, c, k> | G = (V,E) \text{ is a complete graph, } c: E \to \mathbb{N}, \ k \in \mathbb{N}, \text{ and } G \text{ has a cycle visiting each node exactly once, with total cost } \leq k \}
 \]
- Theorem: TSP is NP-complete.
- Proof:
 - TSP \in NP: Guess tour and verify.
 - TSP is NP-hard: Show UHAMCIRCUIT \leq_p TSP.
 - Map $<G>$ (undirected graph) to $<G', c', k'>$ so that G has a Ham. circuit iff G' with cost function c' has a tour of total cost at most k'.

UHAMCIRCUIT \leq_p TSP

- TSP = $\{ <G, c, k> | G = (V,E) is a complete graph, c: E \rightarrow \mathbb{N}, k \in \mathbb{N}, and G has a cycle visiting each node exactly once, with total cost $\leq k \}$
- Map $<G>$ (undirected graph) to $<G', c', k'>$ so that G has a Ham. circuit iff G' with cost function c' has a tour of total cost $\leq k'$.
- Define mapping so that a Ham. circuit corresponds closely with a tour of cost $\leq k'$.
 - $G' = (V', E')$, where $V' = V$, all vertices of G, $E' = all edges (complete graph)$.
 - $c'(u,v) = 1$ if $(u,v) \not\in E$, 0 if $(u,v) \in E$.
 - $k' = 0$.
- Example:
UHAMCIRCUIT \leq_p TSP

- TSP = \{ <G, c, k> | G = (V,E) is a complete graph, c: E \rightarrow N, k \in N, and G has a cycle visiting each node exactly once, with total cost \leq k \}

- Map <G> (undirected graph) to <G', c', k'>:
 - G' = (V', E'), where V' = V, all vertices of G, E' = all edges (complete graph).
 - c'(u,v) = 1 if (u, v) \notin E, 0 if (u,v) \inE.
 - k' = 0.

- Claim: G has a Ham. circuit iff G' with cost function c' has a tour of total cost \leq k'.

- Proof:
 - \Rightarrow If G has a Ham. circuit, all its edges have cost 0 in G' with c', so we have a circuit of cost 0 in G'.
 - \Leftarrow Tour of cost 0 in G' must consist of edges of cost 0, which are edges in G.
More Examples, Revisited
SUBSET-SUM

• SUBSET-SUM = \{ <S,t> \mid S \text{ is a multiset of } \mathbb{N}, t \in \mathbb{N}, \text{ and } t \text{ is expressible as the sum of some of the elements of } S \}

• Example: \(S = \{ 2, 2, 4, 5, 5, 7 \} \), \(t = 13 \)
 \(<S, t> \in \text{SUBSET-SUM}, \text{ because } 7 + 4 + 2 = 13 \)

• Theorem: SUBSET-SUM is NP-complete.

• Proof:
 – Show 3SAT \(\leq_p \) SUBSET-SUM.
 – Tricky, detailed, see book.
PARTITION

• PARTITION = \{ <S> \mid S is a multiset of N and S can be split into multisets S_1 and S_2 having equal sums \}

• Example: S = \{ 2, 2, 4, 5, 5, 7 \}
 S \notin \text{PARTITION}, since the sum is odd

• Example: T = \{ 2, 2, 5, 6, 9, 12 \}
 T \in \text{PARTITION}, since 2 + 2 + 5 + 9 = 6 + 12.

• Theorem: PARTITION is NP-complete.

• Proof:
 – Show SUBSET-SUM \leq_p \text{PARTITION}.
 – Simple…in recitation?
MULTIPROCESSOR SCHEDULING

• MPS = { <S, m, D> |
 – S is a multiset of N (represents durations for tasks),
 – m ∈ N (number of processors), and
 – D ∈ N (deadline),
 and S can be written as S₁ ∪ S₂ ∪ ... ∪ Sₘ such that, for every i, sum(Sᵢ) ≤ D }

• Theorem: MPS is NP-complete.

• Proof:
 – Show PARTITION ≤ₚ MPS.
 – Simple…in recitation?
Next time…

• Probabilistic Turing Machines and Probabilistic Time Complexity Classes

• Reading:
 – Sipser Section 10.2