Lecture 4: Divide and Conquer: van Emde Boas Trees

- Series of Improved Data Structures
- Insert, Successor
- Delete
- Space

This lecture is based on personal communication with Michael Bender, 2001.

Goal

We want to maintain n elements in the range $\{0, 1, 2, \ldots, u - 1\}$ and perform Insert, Delete and Successor operations in $O(\log \log u)$ time.

- If $n = n^{O(1)}$ or $n^{(\log n)^{O(1)}}$, then we have $O(\log \log n)$ time operations
 - Exponentially faster than Balanced Binary Search Trees
 - Cooler queries than hashing

- Application: Network Routing Tables
 - $u = \text{Range of IP Addresses} \rightarrow \text{port to send}$
 $(u = 2^{32} \text{ in IPv4})$

Where might the $O(\log \log u)$ bound arise?

- Binary search over $O(\log u)$ elements
- Recurrences
 - $T(\log u) = T\left(\frac{\log u}{2}\right) + O(1)$
 - $T(u) = T(\sqrt{u}) + O(1)$

Improvements

We will develop the van Emde Boas data structure by a series of improvements on a very simple data structure.
Bit Vector

We maintain a vector V of size u such that $V[x] = 1$ if and only if x is in the set. Now, inserts and deletes can be performed by just flipping the corresponding bit in the vector. However, successor/predecessor requires us to traverse through the vector to find the next 1-bit.

- Insert/Delete: $O(1)$
- Successor/Predecessor: $O(u)$

![Figure 1: Bit vector for $u = 16$. The current set is {1, 9, 10, 15}.](image)

Split Universe into Clusters

We can improve performance by splitting up the range $\{0, 1, 2, \ldots, u-1\}$ into \sqrt{u} clusters of size \sqrt{u}. If $x = i\sqrt{u} + j$, then $V[x] = V.Cluster[i][j]$.

- $low(x) = x \mod \sqrt{u} = j$
- $high(x) = \left\lfloor \frac{x}{\sqrt{u}} \right\rfloor = i$
- $index(i,j) = i\sqrt{u} + j$

![Figure 2: Bit vector ($u = 16$) split into $\sqrt{16} = 4$ clusters of size 4.](image)

- Insert:
 - Set $V.cluster[high(x)][low(x)] = 1$ $O(1)$
- Mark cluster \(\text{high}(x) \) as non-empty \(\mathcal{O}(1) \)

- **Successor:**
 - Look within cluster \(\text{high}(x) \) \(\mathcal{O}(\sqrt{u}) \)
 - Else, find next non-empty cluster \(i \) \(\mathcal{O}(\sqrt{u}) \)
 - Find minimum entry \(j \) in that cluster \(\mathcal{O}(\sqrt{u}) \)
 - Return \(\text{index}(i, j) \) Total = \(\mathcal{O}(\sqrt{u}) \)

Recurse

The three operations in Successor are also Successor calls to vectors of size \(\sqrt{u} \). We can use recursion to speed things up.

- \(V.cluster[i] \) is a size-\(\sqrt{u} \) van Emde Boas structure (\(\forall \ 0 \leq i < \sqrt{u} \))
- \(V.summary \) is a size-\(\sqrt{u} \) van Emde Boas structure
- \(V.summary[i] \) indicates whether \(V.cluster[i] \) is nonempty

INSERT(\(V, x \))
1. \(\text{Insert}(V.cluster[\text{high}(x)], \text{low}[x]) \)
2. \(\text{Insert}(V.summary, \text{high}[x]) \)

So, we get the recurrence:

\[
T(u) = 2T(\sqrt{u}) + \mathcal{O}(1) \\
T'(\log u) = 2T'\left(\frac{\log u}{2}\right) + \mathcal{O}(1) \\
\implies T(u) = T'(\log u) = \mathcal{O}(\log u)
\]

SUCCESSOR(\(V, x \))
1. \(i = \text{high}(x) \)
2. \(j = \text{Successor}(V.cluster[i], j) \)
3. **if** \(j = \infty \)
4. \(i = \text{Successor}(V.summary, i) \)
5. \(j = \text{Successor}(V.cluster[i], -\infty) \)
6. \(\text{return index}(i, j) \)
\[T(u) = 3T(\sqrt{u}) + \mathcal{O}(1) \]
\[T'(\log u) = 3T'\left(\frac{\log u}{2}\right) + \mathcal{O}(1) \]
\[\implies T(u) = T'(\log u) = \mathcal{O}((\log u)^{\log 3}) \approx \mathcal{O}((\log u)^{1.585}) \]

To obtain the \(\mathcal{O}(\log \log u) \) running time, we need to reduce the number of recursions to one.

Maintain Min and Max

We store the minimum and maximum entry in each structure. This gives an \(\mathcal{O}(1) \) time overhead for each *Insert* operation.

SUCCESSOR\((V, x)\)

```plaintext
1    i = high(x)
2    if low(x) < V.cluster[i].max
3        j = Successor(V.cluster[i], low(x))
4    else i = Successor(V.summary, high(x))
5        j = V.cluster[i].min
6    return index(i, j)
```

\[T(u) = T(\sqrt{u}) + \mathcal{O}(1) \]
\[\implies T(u) = \mathcal{O}(\log \log u) \]

Don’t store Min recursively

The *Successor* call now needs to check for the min separately.

\[
\text{if } x < V.min : \text{return } V.min \quad \quad (1)
\]
INSERT(\(V, x\))

1. if \(V.min == None\)
2. \(V.min = V.max = x\) \(\triangleright \mathcal{O}(1)\) time
3. return
4. if \(x < V.min\)
5. \(swap(x \leftrightarrow V.min)\)
6. if \(x > V.max\)
7. \(V.max = x\)
8. if \(V.cluster[\text{high}(x)] == None\)
9. \(\text{Insert}(V.summary, \text{high}(x))\) \(\triangleright \text{First Call}\)
10. \(\text{Insert}(V.cluster[\text{high}(x)], \text{low}(x))\) \(\triangleright \text{Second Call}\)

If the first call is executed, the second call only takes \(\mathcal{O}(1)\) time. So

\[
T(u) = T(\sqrt{u}) + \mathcal{O}(1) \\
\Rightarrow T(u) = \mathcal{O}(\log \log u)
\]

DELETE(\(V, x\))

1. if \(x == V.min\) \(\triangleright \text{Find new min}\)
2. \(i = V.summary.min\)
3. if \(i == None\)
4. \(V.min = V.max = None\) \(\triangleright \mathcal{O}(1)\) time
5. return
6. \(V.min = \text{index}(i, V.cluster[i].min)\) \(\triangleright \text{Unstore new min}\)
7. \(\text{Delete}(V.cluster[\text{high}(x)], \text{low}(x))\) \(\triangleright \text{First Call}\)
8. if \(V.cluster[\text{high}(x)].min == None\)
9. \(\text{Delete}(V.summary, \text{high}(x))\) \(\triangleright \text{Second Call}\)
10.
11. if \(x == V.max\)
12. if \(V.summary.max == None\)
13. else
14. \(i = V.summary.max\)
15. \(V.max = \text{index}(i, V.cluster[i].max)\)

If the second call is executed, the first call only takes \(\mathcal{O}(1)\) time. So

\[
T(u) = T(\sqrt{u}) + \mathcal{O}(1) \\
\Rightarrow T(u) = \mathcal{O}(\log \log u)
\]
Lower Bound [Patrascu & Thorup 2007]

Even for static queries (no Insert/Delete)

• $\Omega(\log\log u)$ time per query for $u = n^{(\log n)^{O(1)}}$

• $O(n \cdot \text{poly}(\log n))$ space

Space Improvements

We can improve from $\Theta(u)$ to $O(n \log \log u)$.

• Only create nonempty clusters

 – If $V\text{.min}$ becomes None, deallocate V

• Store $V\text{.cluster}$ as a hashtable of nonempty clusters

• Each insert may create a new structure $\Theta(\log\log u)$ times (each empty insert)

 – Can actually happen [Vladimir Čunát]

• Charge pointer to structure (and associated hash table entry) to the structure

This gives us $O(n \log \log u)$ space (but randomized).

Indirection

We can further reduce to $O(n)$ space.

• Store vEB structure with $n = O(\log \log u)$ using BST or even an array

 $\implies O(\log \log n)$ time once in base case

• We use $O(n/\log \log u)$ such structures (disjoint)

 $\implies O\left(\frac{n}{\log \log u} \cdot \log \log u\right) = O(n)$ space for small

• Larger structures “store” pointers to them

 $\implies O\left(\frac{n}{\log \log u} \cdot \log \log u\right) = O(n)$ space for large

• Details: Split/Merge small structures
6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.