6.046 pre-requisite:
Data structures such as heaps, trees, graphs
 Algorithms for sorting, shortest paths,
 graph search, dynamic programming

Several modules:
Divide & conquer - FFT, randomized algs
Optimization - greedy, dynamic prog
Network Flow
Intractability (and dealing with it)
Linear programming
Sublinear algorithms, approximation algs
Advanced Topics

Read course information & objectives on Stellar.
Register on stellar for 6.046 (if you haven't and for a section already)
Pay particular attention to course collaboration policy!
Theme of today's lecture

Very similar problems can have very different complexity.

Recall: \(P \): class of problems solvable in polynomial time. \(O(n^k) \) for some constant \(k \)

Shortest paths in a graph \(O(v^2) \) e.g.

\(NP \): class of problems verifiable in polynomial time.

Hamiltonian cycle a directed graph \(G(V,E) \) is a simple cycle that contains each vertex in \(V \).

Determining whether a graph has a Hamiltonian cycle is NP-complete but verifying that a cycle is Hamiltonian is easy.

\(P \subseteq NP \) but is \(P = NP \) ?

NP-complete: problem is in NP and is as hard as any problem in NP.

If any NPC problem can be solved in poly time, then every problem in NP has a poly time solution.
Interval Scheduling

Resources & requests
Requests 1, ..., n, single resource
S(i) start time, f(i) finish time s(i) < f(i)

Two requests i & j are compatible if they don't overlap, i.e., f(i) ≤ s(j)
or f(j) ≤ s(i)

\[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{array} \]

3 compatible requests

Goal: Select a compatible subset of requests of maximum size.

Claim: We can solve this using a greedy algorithm.

A greedy algorithm is a myopic algorithm that processes the input one piece at a time with no apparent look ahead.
Greedy Interval Scheduling

1. Use a simple rule to select a request i.
2. Reject all requests incompatible with i.
3. Repeat until all requests are processed.

Possible rules:

1. Select request that starts earliest, i.e., minimum $s(i)$.
2. Select request that is smallest, i.e., minimum $f(i) - s(i)$.
3. For each request find # incompatibles. Select the one with minimum # incompatibles.
4. Select request with earliest finish time, i.e., minimum $f(i)$.

bad selection!
Claim: Greedy algorithm outputs a list of intervals \((<s(i_1), f(i_1)>, <s(i_2), f(i_2)>, \ldots, <s(i_k), f(i_k)>\)) such that \(s(i_1) < f(i_1) \leq s(i_2) < f(i_2) \leq \ldots \leq s(i_k) < f(i_k)\).

Proof: If \(f(i_j) > s(i_{j+1})\) interval \(j+1\) intersects. Contradicts Step 2 of algorithm.

Claim: Given list of intervals \(L\), greedy algorithm with earliest finish time produces \(k^*\) intervals, where \(k^*\) is optimal.

Proof: Induction on \(k^*\).

Base case: \(k^* = 1\). Any interval works.

Suppose claim holds for \(k^*\) and we are given a list of intervals whose \(k^*\) optimal schedule has \(k^* + 1\) intervals, namely

\[S^* \left[1, 2, \ldots, k^* + 1\right] = <s(i_1), f(i_1)>, \ldots, <s(i_{k^*+1}), f(i_{k^*+1})>\]
Say that $S[1, \ldots k] = \langle s(i_1), f(i_1), \ldots, s(i_k), f(i_k) \rangle$

is what the greedy algorithm gives.

By construction $f(i_1) \leq f(i_2) \leftarrow$ earliest finish time

Create schedule (this is valid!)

$S^{**} = \langle s(i_1), f(i_1) \rangle, \langle s(i_2), f(i_2) \rangle, \ldots, \langle s(i_{k+1}), f(i_{k+1}) \rangle$

This is also optimal.

Define $L' = \text{set of intervals with } s(i) \succ f(i_1)$

Since S^{**} is optimal for L, $S^{**}[2, \ldots, k+1]$ is optimal for L'.

An optimal schedule for L' has k^* size.

By inductive hypothesis, running greedy algorithm on L' should produce a schedule of size k^*.

By construction, running greedy algorithm on L' gives us $S[2, \ldots k]$.

This means $k-1 = k^*$ or $k = k^* + 1$ and $S[1, \ldots k]$ is optimal.
Weighted Interval Scheduling

Each request i has weight $w(i)$. Schedule subset of requests with maximum weight.

Dynamic Programming

Subproblems are

$$R^x = \{ \text{request } j \in R \mid s(j) \geq x \}$$

If we set $x = f(i)$ then R^x is the set of requests later than request i in different subproblems, one for each request. Only need to solve each subproblem once & memoize.
DP Guessing

Try each request \(i \) as a possible first request
If we pick request as the first request then remaining requests are \(R_f(c) \)

Note: There may be requests compatible with \(i \) that are not in \(R_f(c) \) but we are picking \(i \) as the first request (i.e., we are going in order)

\[
\text{opt}(R) = \max_{1 \leq i \leq n} (w_i + \text{opt}(R_f(i)))
\]

Running time? \(O(n^2) \)

Exercise: Use sorting initially and reduce DP complexity to \(O(n) \). Overall complexity will be \(O(n \log n) \)
requests \(1, \ldots, n\), \(s(i), f(i)\) as before in machine types \(\mathcal{T} = \{T_1, \ldots, T_m\}\) weight of 1 for each request.

\(Q(i) \subseteq \mathcal{T}\) is set of machines that request \(i\) can be serviced on.

Maximize the number of jobs that can be scheduled on the \(m\) machines.

\(\text{Can clearly check that any given subset of jobs with machine assignments is legal.}\)

\(\text{Can } k \leq n \text{ requests be scheduled? NP-complete}\)

Maximum requests should be scheduled. \(\text{NP-hard}\)

\(\text{Dealing with Intractability}\)

1) Approximation algorithms: Guarantee within some factor of optimal in poly time.
2) Pruning heuristics to reduce (possibly exponential) runtime on "real-world" examples.
3) Greedy or other suboptimal heuristics that work well in practice \(\sim\) no guarantees