Randomized Algorithms

Why randomized?
- Checking Matrix multiply
- Quicksort

Randomized or Probabilistic Algorithms

- Algorithm that generates a random number \(r \in \{1, \ldots, k\} \) and makes decisions based on \(r \)'s value.
- On the same input on different executions randomized algorithm may
 - run for a different number of steps
 - produce different outputs

Monte Carlo
- runs in poly time always
- \(\text{prob (output is correct)} \geq \text{high} \)

Las Vegas
- always produces correct output
- runs in expected poly time

Variation due to \(r \)
Matrix Product

\[
C = A \times B
\]

Simple algorithm: \(O(n^3)\) multiplications

Strassen: Multiply two \(2 \times 2\) matrices using 7 multiplications: \(O(n^{\log_2 7})\)

Coppersmith-Winograd: \(O(n^{2.376})\)

Matrix Product Checker

Given \(n \times n\) matrices \(A, B, C\)

Goal: check if \(A \times B = C\) or not?

Question: Can we do better than multiply?

We will see an \(O(n^2)\) algorithm that:

\[
\begin{array}{c}
\text{if } A \times B = C, \text{ then } \text{prob}[\text{output} = \text{YES}] = 1 \\
\text{if } A \times B \neq C, \text{ then } \text{prob}[\text{output} = \text{YES}] \leq \frac{1}{2}
\end{array}
\]

We will assume entries in matrices \(\in \{0, 1\}\) assume mod 2 arithmetic.
Frievald's algorithm

Choose a random binary vector \(r[1 \ldots n] \) such that \(\Pr [r_i = 1] = 1/2 \) independently for \(i = 1, \ldots, n \). If \(A(B \cdot r) = C \cdot r \), then output 'YES'; else output 'NO'.

Observations:
- \(O(n^2) \) time, since 3 matrix vector multiplications for \(Br, A(Br), Cr \)
- If \(AB = C \), then \(A(Br) = (AB)r = Cr \) and algorithm always outputs YES.

Analyzing correctness if \(AB \neq C \)

Claim: If \(AB \neq C \), then \(\Pr [AB \cdot r \neq Cr] > 1/2 \)

Let \(D = AB - C \). Our hypothesis is thus that

\[D \neq 0 \]

Clearly, there exists \(r \) such that \(Dr \neq 0 \). We need to show that there are many \(r \) such that \(Dr \neq 0 \).

Specifically, \(\Pr [Dr \neq 0] > 1/2 \) for a randomly chosen \(r \).
Analyzing correctness (cont'd.)

If \(Dr \neq 0 \), we would output 'No', done

Dr = 0 case

\[D = AB - C \neq 0 \Rightarrow \exists i,j \text{ s.t. } d_{ij} \neq 0 \]

Fix vector \(v \) which is 0 in all coordinates except for \(v_j = 1 \)

\((Dv)i = d_{ij} \neq 0\) implying \(Dv \neq 0 \)

Take any \(r \) that can be chosen by our algo.

We are looking at the case where \(Dr = 0 \).

\[r' = r + v \quad \text{vector addition} \]

\(r' \) same as \(r \) except \(r'_j = (r_j + v_j) \mod 2 \)

\[Dr' = D(r + v) = 0 + Dv \neq 0 \]

\(r \) to \(r' \) is 1 to 1 because if \(r' = r + v \) then \(r'' = r'' + v \) \(r = r'' \)

Number of \(r' \) for which \(Dr' \neq 0 \) > Number of \(r \) for which \(Dr = 0 \)

\[P_r[Dr \neq 0] > \frac{1}{2} \]
Quicksort

C.A.R. Hoare (1962)

Divide & conquer algorithm but work mostly in divide step rather than combine.

Sorts "in place" like insertion sort and unlike merge sort requires O(n) auxiliary space.

Different variants:

Basic: good in average case (for a random input).

Median-based pivoting: uses median finding.

Randomized: good for all inputs in expectation.

Las Vegas algorithm.
QuickSort

n-element array A

Divide:
1. Pick a pivot element x in A
 Partition the array into sub-arrays L, E, and G

 \[\begin{array}{c|c|c}
 \leq x & x & > x \\
 \end{array} \]

Conquer: Recursively sort subarrays L and G

Combine: Trivial

Basic QuickSort

pivot $x = A[1]$ or $A[n]$, first or last element
- Remove, in turn, each element y from A and
 - Insert y into L, E or G depending on
 - The comparison with pivot x
- Each insertion and removal takes $O(1)$ time
- Partition step takes $O(n)$ time
- To do this in place: see code in CLRS p 171
Basic Quicksort analysis

- Input sorted or reverse sorted
- Partition around min or max elements
- One side L or G1 has n-1 elements, other 0

\[T(n) = T(0) + T(n-1) + \Theta(n) \]
\[= \Theta(n) + T(n-1) + \Theta(n) \]
\[= T(n-1) + \Theta(n) \]
\[= \Theta(n^2) \text{ (arithmetic series)} \]

Does well on random inputs in practice

Pivot Selection Using Median Finding

Can guarantee balanced L and G using rank/median selection algorithm that runs in \(\Theta(n) \) time

\[T(n) = 2 T(\frac{n}{2}) + \Theta(n) + \Theta(n) \]

\(\text{recursive median selection} \)

\(T(n) = \Theta(n \log n) \)

This algorithm is slow in practice and loses to mergesort.
Randomized Quicksort

X is chosen at random from array A (at each recursion, a random choice is made).

Expected time is $O(n \log n)$ for all input arrays A.

See CLRS p. 181-4 for analysis; we will analyze here a variant quicksort.

"Paranoid" Quicksort

Repeat
 choose pivot to be random element of A
 Perform Partition
 Until resulting partition is such that
 $|L| \leq \frac{3}{4} |A|$ and $|R| \leq \frac{3}{4} |A|$

Recurse on L and R.
"Paranoid" Quicksort Analysis

Good call: sizes of L & G ≤ \(\frac{3}{4} n \) each
Bad call: one of L or G is \(\geq \frac{3n}{4} \)

- pivots
 - bad
 - good
 - bad

\(\frac{1}{4} n \) \(\frac{1}{2} n \) \(\frac{1}{4} n \)

A call is good with probability \(\geq \frac{1}{2} \)

Let \(T(n) \) be an upper bound on the expected running time on any array of \(n \) size

\(T(n) \) comprises:

- Time needed to sort left subarray
- Time needed to sort right subarray
- The number of iterations to get a good call \(\times c \cdot n \)
 Cost of partition
Expectations

\[T(n) \leq \max_{n/4 \leq i \leq 3n/4} (T(i) + T(n-i)) + E(\text{\# iterations}) \cdot cn \]

\[E(\text{\# iterations}) \leq 2 \quad \text{since prob of good call} \quad > 1/2 \]

\[= T(\frac{n}{4}) + T(\frac{3n}{4}) + 2cn \]

2cn work at each level
\[\max \log_{4} \left(\frac{2cn}{3} \right) \text{ levels} \]

\(\Theta(n \log n) \) expected runtime.