Lecture 05

Hidden Markov Models
Part II
Module 1: Aligning and modeling genomes

- **Module 1: Computational foundations**
 - Dynamic programming: exploring exponential spaces in poly-time
 - Introduce Hidden Markov Models (HMMs): Central tool in CS
 - HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring

- **This week: Sequence alignment / comparative genomics**
 - Local/global alignment: infer nucleotide-level evolutionary events
 - Database search: scan for regions that may have common ancestry

- **Next week: Modeling genomes / exon / CpG island finding**
 - Modeling class of elements, recognizing members of a class
 - Application to gene finding, conservation islands, CpG islands
Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
 – Markov Chains and Hidden Markov Models
 – Calculating likelihoods $P(x, \pi)$ (algorithm 1)
 – Viterbi algorithm: Find $\pi^* = \arg\max_{\pi} P(x, \pi)$ (alg 3)
 – Forward algorithm: Find $P(x)$, over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
 – Finding GC-rich regions vs. finding CpG islands
 – Gene structures (GENSCAN), chromatin (ChromHMM)

3. Posterior decoding: Another way of ‘parsing’
 – Find most likely state π_i, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
 – Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 – Unsupervised: given only $x \rightarrow$ annotation + params
Markov chains and Hidden Markov Models (HMMs)

- What you see is what you get: next state only depends on current state (no memory)

All observed

- Markov Chain
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities

- HMM
 - Q: states, p: initial, A: transitions
 - V: observations
 - E: emission probabilities

- Hidden state of the world determines emission probabilities
- State transitions are a Markov chain
HMM nomenclature for this course

- **Vector** \mathbf{x} = Sequence of observations
- **Vector** $\mathbf{\pi}$ = Hidden path (sequence of hidden states)
- **Transition matrix** $\mathbf{A}=a_{kl}$ = probability of $k \rightarrow l$ state transition
- **Emission vector** $\mathbf{E}=e_k(x_i)$ = prob. of observing x_i from state k
- **Bayes’s rule**: Use $P(x_i|\pi_i=k)$ to estimate $P(\pi_i=k|x_i)$

Transitions: $a_{kl}=P(\pi_i=l|\pi_{i-1}=k)$
Transition probability from state k to state l

Emissions: $e_k(x_i)=P(x_i|\pi_i=k)$
Emission probability of symbol x_i from state k
Example: The Dishonest Casino

A casino has two dice:

- Fair die
 \[P(1) = P(2) = P(3) = P(5) = P(6) = \frac{1}{6} \]

- Loaded die
 \[P(1) = P(2) = P(3) = P(4) = P(5) = \frac{1}{10} \]
 \[P(6) = \frac{1}{2} \]

Casino player switches between fair and loaded die on average once every 20 turns

Game:

1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $2
Examples of HMMs for genome annotation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology / Transitions</td>
<td>2 states, different nucleotide composition</td>
<td>2 states, different conservation levels</td>
<td>2 states, different trinucleotide composition</td>
<td>2 states, different evolutionary signatures</td>
<td>~20 states, different composition/conservation, specific structure</td>
<td>40 states, different chromatin mark combinations</td>
</tr>
<tr>
<td>Hidden States / Annotation</td>
<td>GC-rich / AT-rich</td>
<td>Conserved / non-conserved</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>First/last/middle coding exon, UTRs, intron1/2/3, intergenic, *(+/- strand)</td>
<td>Enhancer / promoter / transcribed / repressed / repetitive</td>
</tr>
<tr>
<td>Emissions / Observations</td>
<td>Nucleotides</td>
<td>Level of conservation</td>
<td>Triplets of nucleotides</td>
<td>Nucleotide triplets, conservation levels</td>
<td>Codons, nucleotides, splice sites, start/stop codons</td>
<td>Vector of chromatin mark frequencies</td>
</tr>
</tbody>
</table>
The main questions on HMMs

1. **Scoring x, one path** = Joint probability of a sequence and a path, given the model
 - GIVEN a HMM M, a path \(\pi \), and a sequence x,
 - FIND \(\text{Prob}[x, \pi | M] \)

 ➜ “Running the model”, simply multiply emission and transition probabilities

 ➜ Application: “all promoter” vs. “all backgorund” comparisons

2. **Scoring x, all paths** = total probability of a sequence, summed across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability \(P[x | M] \) summed across all paths

 ➜ Forward algorithm, sum score over all paths (same result as backward)

3. **Viterbi decoding** = parsing a sequence into the optimal series of hidden states
 - GIVEN a HMM M, and a sequence x,
 - FIND the sequence \(\pi^* \) of states that maximizes \(P[x, \pi | M] \)

 ➜ Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path

4. **Posterior decoding** = total prob that emission \(x_i \) came from state k, across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability \(P[\pi_i = k | x, M] \)

 ➜ Posterior decoding: run forward & backward algorithms to & from state \(\pi_i = k \)

5. **Supervised learning** = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - FIND parameters \(\theta = (e_i, a_{ij}) \) that maximize \(P[x | \theta] \)

 ➜ Simply count frequency of each emission and transition observed in the training data

6. **Unsupervised learning** = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - FIND parameters \(\theta = (e_i, a_{ij}) \) that maximize \(P[x | \theta] \)

 ➜ Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate

 ➜ Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate
<table>
<thead>
<tr>
<th>Decoding</th>
<th>Scoring</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>One path</td>
<td>All paths</td>
<td></td>
</tr>
<tr>
<td>1. Scoring x, one path</td>
<td>2. Scoring x, all paths</td>
<td></td>
</tr>
<tr>
<td>[P(x, \pi)]</td>
<td>[P(x) = \sum_{\pi} P(x, \pi)]</td>
<td></td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Prob of emissions, over all paths</td>
<td></td>
</tr>
<tr>
<td>3. Viterbi decoding</td>
<td>4. Posterior decoding</td>
<td></td>
</tr>
<tr>
<td>[\pi^* = \arg\max_{\pi} P(x, \pi)]</td>
<td>[\pi^\Lambda = {\pi_i \mid \pi_i = \arg\max_k \sum_{\pi} P(\pi_i = k</td>
<td>x)}]</td>
</tr>
<tr>
<td>Most likely path</td>
<td>Path containing the most likely state at any time point.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Supervised learning, given π</td>
</tr>
<tr>
<td>[\Lambda^* = \arg\max_{\Lambda} P(x, \pi</td>
</tr>
<tr>
<td>[\Lambda^* = \arg\max_{\Lambda} \max_{\pi} P(x, \pi</td>
</tr>
<tr>
<td>Viterbi training, best path</td>
</tr>
</tbody>
</table>

5. Unsupervised learning. |
| \[\Lambda^* = \arg\max_{\Lambda} \sum_{\pi} P(x, \pi|\Lambda) \] |
| Baum-Welch training, over all paths |
Probability of given path \(\pi \), emissions \(x \)

- \(\pi \) is the (hidden) path
- \(x \) is the (observed) sequence

\[
P(x, \pi) = a_{0\pi_1} \times \prod_i e_{\pi_i}(x_i) \times a_{\pi_i\pi_{i+1}}
\]

Courtesy of Serafim Batzoglou. Used with permission.
Example: One particular P vs. B assignment

\[
P = P(G \mid B)P(B_1 \mid B_0)P(C \mid B)P(B_2 \mid B_1)P(A \mid B)P(P_3 \mid B_2)\ldots P(C \mid B_7)
\]

\[
= (0.85)^3 \times (0.25)^6 \times (0.75)^2 \times (0.42)^2 \times 0.30 \times 0.15
\]

\[
= 6.7 \times 10^{-7}
\]
One path

1. Scoring x, one path
 \[P(x, \pi) \]
 Prob of a path, emissions

3. Viterbi decoding
 \[\pi^* = \text{argmax}_\pi P(x, \pi) \]
 Most likely path

5. Supervised learning, given π
 \[\Lambda^* = \text{argmax}_\Lambda P(x, \pi | \Lambda) \]

6. Unsupervised learning
 \[\Lambda^* = \text{argmax}_\Lambda \max_\pi P(x, \pi | \Lambda) \]
 Viterbi training, best path

All paths

2. Scoring x, all paths
 \[P(x) = \sum_\pi P(x, \pi) \]
 Prob of emissions, over all paths

4. Posterior decoding
 \[\pi^\wedge = \{ \pi_i | \pi_i = \text{argmax}_k \sum_\pi P(\pi_i = k | x) \} \]
 Path containing the most likely state at any time point.

6. Unsupervised learning
 \[\Lambda^* = \text{argmax}_\Lambda \sum_\pi P(x, \pi | \Lambda) \]
 Baum-Welch training, over all paths
Finding the most likely path

- Find path π^* that maximizes total joint probability $P[x, \pi]$
- $\arg\max_{\pi} P(x, \pi) = \arg\max_{\pi} a_{0\pi_1} \prod_i e_{\pi_i}(x_i) \times a_{\pi_i\pi_{i+1}}$

1
2
\(\cdots\)
K

\(x_1\)
\(x_2\)
\(x_3\)
\(x_K\)
Calculate maximum $P(x, \pi)$ recursively

Viterbi algorithm

Define $V_k(i) = \text{Probability of the most likely path through state } \pi_i = k$

Compute $V_k(i+1)$ recursively, as a function of $\max_{k'} \{ V_{k'}(i) \}$

- Assume we know V_j for the previous time step (i-1)

- Calculate $V_k(i) = \max_j \left(\text{this emission} \times \text{Transition from state j} \right)$
The Viterbi Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization:
\[V_0(0) = 1, \quad V_k(0) = 0, \text{ for all } k > 0 \]

Iteration:
\[V_k(i) = e_K(x_i) \times \max_j a_{jk} V_j(i-1) \]

Termination:
\[P(x, \pi^*) = \max_k V_k(N) \]

Traceback:
Follow max pointers back

In practice:
Use log scores for computation

Running time and space:
- Time: \(O(K^2N) \)
- Space: \(O(KN) \)
<table>
<thead>
<tr>
<th>Decoding</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>One path</td>
<td>All paths</td>
</tr>
<tr>
<td>1. Scoring x, one path</td>
<td>2. Scoring x, all paths</td>
</tr>
<tr>
<td>$P(x, \pi)$</td>
<td>$P(x) = \sum_{\pi} P(x, \pi)$</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Prob of emissions, over all paths</td>
</tr>
<tr>
<td>3. Viterbi decoding</td>
<td>4. Posterior decoding</td>
</tr>
<tr>
<td>$\pi^* = \arg\max_{\pi} P(x, \pi)$</td>
<td>$\pi^\wedge = {\pi_i \mid \pi_i = \arg\max_k \Sigma_{\pi} P(\pi_i = k</td>
</tr>
<tr>
<td>Most likely path</td>
<td>Path containing the most likely state at any time point.</td>
</tr>
<tr>
<td>5. Supervised learning, given π</td>
<td>6. Unsupervised learning</td>
</tr>
<tr>
<td>$\Lambda^* = \arg\max_{\Lambda} P(x, \pi</td>
<td>\Lambda)$</td>
</tr>
<tr>
<td>Viterbi training, best path</td>
<td>Baum-Welch training, over all paths</td>
</tr>
</tbody>
</table>
Given a sequence x, What is the probability that x was generated by the model (using any path)?

- $P(x) = \sum_\pi P(x,\pi)$

Challenge: exponential number of paths
- Sum over all paths, weighing the path probability, and the emission probs
- Prob of emitting sequence: use individual emission probs from each state
- Prob of path: use both emission and transition prob, based on previous path

$$P(x) = \sum_\pi a_{0\pi_1} \prod_i e_{\pi_i}(x_i) \times a_{\pi_i\pi_{i+1}}$$
Calculate total probability $\Sigma_{\pi} P(x, \pi)$ recursively

- Assume we know f_j for the previous time step (i-1)

- Calculate $f_k(i) =$ current sum $e_k(x_i)$ * this emission

 $\sum_j \left(\text{sum ending in state } j \text{ at step } i \times a_{jk} \right)$

 Sum over all previous states j
The Forward Algorithm

Input: $x = x_1……x_N$

Initialization:
$f_0(0)=1, f_k(0) = 0$, for all $k > 0$

Iteration:
$f_k(i) = e_K(x_i) \times \sum_j a_{jk} f_j(i-1)$

Termination:
$P(x, \pi^*) = \sum_k f_k(N)$

In practice:
Sum of log scores is difficult
→ approximate $\exp(1+p+q)$
→ scaling of probabilities

Running time and space:
Time: $O(K^2N)$
Space: $O(K)$
Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Calculating likelihoods $P(x, \pi)$ (algorithm 1)
 - Viterbi algorithm: Find $\pi^* = \arg\max_\pi P(x, \pi)$ (alg 3)
 - Forward algorithm: Find $P(x)$, over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
 - Finding GC-rich regions vs. finding CpG islands
 - Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
 - Find most likely state π_i, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only $x \rightarrow$ annotation + params
Increasing the state space
(remembering more)

HMM1: Promoters = **only Cs and Gs matter**
HMM2: Promoters = it’s actually CpGs that matter
(di-nucleotides, remember previous nucleotide)
Increasing the state of the system (looking back)

- Markov Models are memory-less
 - In other words, all memory is encoded in the states
 - To remember additional information, augment state
- A two-state HMM has minimal memory
 - Two states: GC-rich vs. equal probability
 - State, emissions, only depend on current state
 - Current state only encodes one previous nucleotide
- How do you count di-nucleotide frequencies?
 - CpG islands: di-nucleotides
 - Codon triplets: tri-nucleotides
 - Di-codon frequencies: six nucleotides

\(\Rightarrow \) Expanding the number of states
Remember previous nucleotide: expand both states

“Memory” of previous nucleotide is encoded in the current state.

GC-rich: 4 states
Background: 4 states
HMM for CpG islands

- A single model combines two Markov chains, each of four nucleotides:
 - ‘+’ states: A_+, C_+, G_+, T_+
 - Emit symbols: A, C, G, T in CpG islands
 - ‘-’ states: A_-, C_-, G_-, T_-
 - Emit symbols: A, C, G, T in non-islands
- Emission probabilities distinct for the ‘+’ and the ‘-’ states
 - Infer most likely set of states, giving rise to observed emissions
 - ‘Paint’ the sequence with + and - states

Why we need so many states…

In our simple GC-content example, we only had 2 states (+|-)

Why do we need 8 states here: 4 CpG+ / 4 CpG-

Encode ‘memory’ of previous state: nucleotide transitions
Training emission parameters for CpG+/CpG- states

- Count di-nucleotide frequencies:
 - 16 possible di-nucleotides. 16 transition parameters.
 - Alternative: 16 states, each emitting di-nucleotide

- Derive two Markov chain models:
 - ‘+’ model: from the CpG islands
 - ‘-’ model: from the remainder of sequence

- Transition probabilities for each model:
 - Encode differences in di-nucleotide frequencies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>.180</td>
<td>.274</td>
<td>.426</td>
<td>.120</td>
</tr>
<tr>
<td>C</td>
<td>.171</td>
<td>.368</td>
<td>.274</td>
<td>.188</td>
</tr>
<tr>
<td>G</td>
<td>.161</td>
<td>.339</td>
<td>.375</td>
<td>.125</td>
</tr>
<tr>
<td>T</td>
<td>.079</td>
<td>.355</td>
<td>.384</td>
<td>.182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>.300</td>
<td>.205</td>
<td>.285</td>
<td>.210</td>
</tr>
<tr>
<td>C</td>
<td>.322</td>
<td>.298</td>
<td>.078</td>
<td>.302</td>
</tr>
<tr>
<td>G</td>
<td>.248</td>
<td>.246</td>
<td>.298</td>
<td>.208</td>
</tr>
<tr>
<td>T</td>
<td>.177</td>
<td>.239</td>
<td>.292</td>
<td>.292</td>
</tr>
</tbody>
</table>
Examples of HMMs for genome annotation

<table>
<thead>
<tr>
<th>Detection</th>
<th>Detection</th>
<th>Detection</th>
<th>Detection</th>
<th>Detection</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>of GC-rich regions</td>
<td>of CpG-rich regions</td>
<td>of conserved regions</td>
<td>of protein-coding exons</td>
<td>of protein-coding conservation</td>
<td>of protein-coding gene structures</td>
</tr>
<tr>
<td>2 states, different nucleotide composition</td>
<td>8 states, different nucleotide composition</td>
<td>2 states, different conservation</td>
<td>2 states, different conservation</td>
<td>2 states, different conservation</td>
<td>~20 states, different chromatin states</td>
</tr>
<tr>
<td>GC-rich / AT-rich</td>
<td>CpG-rich / CpG-poor</td>
<td>Conserved / non-conserved</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>First/last/middle coding exon, UTRs, intron1/2/3, intergenic, *(+/- strand)</td>
</tr>
<tr>
<td>Nucleotides</td>
<td>Di-Nucleotides</td>
<td>Level of conservation</td>
<td>Triplets of nucleotides</td>
<td>64x64 matrix of codon substitution frequencies</td>
<td>Codons, nucleotides, splice sites, start/stop codons</td>
</tr>
</tbody>
</table>
HMM architecture matters: Protein-coding genes

- Gene vs. Intergenic
- Start & Stop in/out
- UTR: 5’ and 3’ end
- Exons, Introns
- Remembering frame
 - E₀,E₁,E₂
 - I₀,I₁,I₂
- Sequence patterns to transition between states:
 - ATG, TAG, Acceptor/Donor, TATA, AATAAA

© Bill Majoros / GeneZilla. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Chromatin State: Emission & Transition Matrices

• Emission matrix:
 • Multi-variate HMM
 • Emits vector of values

• Transition matrix:
 • Learn spatial relationships
 • No a-priori ‘gene’ structure

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Calculating likelihoods $P(x, \pi)$ (algorithm 1)
 - Viterbi algorithm: Find $\pi^* = \operatorname{argmax}_\pi P(x, \pi)$ (alg 3)
 - Forward algorithm: Find $P(x)$, over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
 - Finding GC-rich regions vs. finding CpG islands
 - Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
 - Find most likely state π_i, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only x \rightarrow annotation + params
<table>
<thead>
<tr>
<th>One path</th>
<th>All paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring x, one path</td>
<td>2. Scoring x, all paths</td>
</tr>
<tr>
<td>$P(x, \pi)$</td>
<td>$P(x) = \sum_\pi P(x, \pi)$</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Prob of emissions, over all paths</td>
</tr>
<tr>
<td>3. Viterbi decoding</td>
<td>4. Posterior decoding</td>
</tr>
<tr>
<td>$\pi^* = \arg\max_\pi P(x, \pi)$</td>
<td>$\pi^\Lambda = {\pi_i \mid \pi_i = \arg\max_k \sum_\pi P(\pi_i = k \mid x)}$</td>
</tr>
<tr>
<td>Most likely path</td>
<td>Path containing the most likely state at any time point.</td>
</tr>
<tr>
<td>5. Supervised learning, given π</td>
<td>6. Unsupervised learning</td>
</tr>
<tr>
<td>$\Lambda^* = \arg\max_\Lambda P(x, \pi \mid \Lambda)$</td>
<td>$\Lambda^* = \arg\max_\Lambda \sum_\pi P(x, \pi \mid \Lambda)$</td>
</tr>
<tr>
<td>Viterbi training, best path</td>
<td>Baum-Welch training, over all paths</td>
</tr>
</tbody>
</table>
4. Decoding, all paths

Find the likelihood an emission x_i is generated by a state
Calculate most probable label at a single position

- Calculate most probable label, L^*_i, at each position i
- Do this for all N positions gives us $\{L^*_1, L^*_2, L^*_3, \ldots, L^*_N\}$
- How much information have we observed? Three settings:
 - Observed nothing: Use prior information
 - Observed only character at position i: Prior + emission probability
 - Observed entire sequence: Posterior decoding

\[P(\text{Label}_i = B | x) \]
Calculate $P(\pi_7 = \text{CpG+} \mid x_7 = \text{G})$

- **With no knowledge (no characters)**
 - Simply time spent in markov chain states
 - $P(\pi_i = k) = \text{most likely state (prior)}$

- **With very little knowledge (just that character)**
 - Time spent, adjusted for different emission probs.
 - Use Bayes rule to change inference directionality
 - $P(\pi_i = k \mid x_i = \text{G}) = P(\pi_i = \kappa) \times P(x_i = \text{G} \mid \pi_i = k) / P(x_i = \text{G})$

- **With knowledge of entire sequence (all characters)**
 - $P(\pi_i = k \mid x = \text{AGCGCG...GATTATCGTGCATA})$
 - Sum over all paths that emit ‘G’ at position 7

⇒ **Posterior** decoding
Motivation for the Backward Algorithm

We want to compute

\[P(\pi_i = k \mid x), \] the probability distribution on the \(i^{th} \) position, given \(x \)

We start by computing

\[P(\pi_i = k, x) = P(x_1 \ldots x_i, \pi_i = k, x_{i+1} \ldots x_N) \]
\[= P(x_1 \ldots x_i, \pi_i = k) P(x_{i+1} \ldots x_N \mid x_1 \ldots x_i, \pi_i = k) \]
\[= P(x_1 \ldots x_i, \pi_i = k) P(x_{i+1} \ldots x_N \mid \pi_i = k) \]

Forward, \(f_k(i) \)
Backward, \(b_k(i) \)
Define the backward probability:

\[b_k(i) = P(x_{i+1}\ldots x_N \mid \pi_i = k) \]

\[= \sum_{\pi_{i+1}\ldots\pi_N} P(x_{i+1}, x_{i+2}, \ldots, x_N, \pi_{i+1}, \ldots, \pi_N \mid \pi_i = k) \]

\[= \sum_l \sum_{\pi_{i+1}\ldots\pi_N} P(x_{i+1}, x_{i+2}, \ldots, x_N, \pi_{i+1} = l, \pi_{i+2}, \ldots, \pi_N \mid \pi_i = k) \]

\[= \sum_l e_l(x_{i+1}) a_{kl} \sum_{\pi_{i+1}\ldots\pi_N} P(x_{i+2}, \ldots, x_N, \pi_{i+2}, \ldots, \pi_N \mid \pi_{i+1} = l) \]

\[= \sum_l e_l(x_{i+1}) a_{kl} b_l(i+1) \]
Calculate total end probability recursively

- Assume we know b_i for the next time step (i+1)

- Calculate $b_k(i) = \sum_l (e_l(x_{i+1}) \times a_{kl} \times b_l(i+1))$

 - current max
 - next emission
 - transition to next state
 - prob sum from state l to end
 - sum over all possible next states
The Backward Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization:
\[b_k(N) = a_{k0}, \text{ for all } k \]

Iteration:
\[b_k(i) = \sum_l e_l(x_{i+1}) a_{kl} b_l(i+1) \]

Termination:
\[P(x) = \sum_l a_{0l} e_l(x_1) b_l(1) \]

In practice:
- Sum of log scores is difficult
 - approximate \(\exp(1+p+q) \)
 - scaling of probabilities

Running time and space:
- Time: \(O(K^2N) \)
- Space: \(O(K) \)
Putting it all together: Posterior decoding

- \(P(k) = \frac{f_k(i)b_k(i)}{P(x)} \)
 - Probability that \(i^{th} \) state is \(k \), given all emissions \(x \)

- Posterior decoding
 - Find the most likely state at position \(i \) over all possible hidden paths given the observed sequence \(x \)
 - \(\pi_i^{\hat{\text{a}}} = \arg\max_k P(\pi_i = k | x) \)

- Posterior decoding ‘path’ \(\pi_i^{\hat{\text{a}}} \)
 - For classification, more informative than Viterbi path \(\pi^* \)
 - More refined measure of “which hidden states” generated \(x \)
 - However, it may give an invalid sequence of states
 - Not all \(j \rightarrow k \) transitions may be possible
Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Calculating likelihoods $P(x, \pi)$ (algorithm 1)
 - Viterbi algorithm: Find $\pi^* = \arg\max_\pi P(x, \pi)$ (alg 3)
 - Forward algorithm: Find $P(x)$, over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
 - Finding GC-rich regions vs. finding CpG islands
 - Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
 - Find most likely state π_i, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only $x \rightarrow$ annotation + params
<table>
<thead>
<tr>
<th>Decoding</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>One path</td>
<td>All paths</td>
</tr>
<tr>
<td>1. Scoring x, one path</td>
<td>2. Scoring x, all paths</td>
</tr>
<tr>
<td>[P(x, \pi)]</td>
<td>[P(x) = \sum_{\pi} P(x, \pi)]</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Prob of emissions, over all paths</td>
</tr>
<tr>
<td>3. Viterbi decoding</td>
<td>4. Posterior decoding</td>
</tr>
<tr>
<td>[\pi^* = \text{argmax}_{\pi} P(x, \pi)]</td>
<td>[\pi^\Lambda = { \pi_i</td>
</tr>
<tr>
<td>Most likely path</td>
<td>Path containing the most likely state at any time point.</td>
</tr>
<tr>
<td>5. Supervised learning, given (\pi)</td>
<td>6. Unsupervised learning</td>
</tr>
<tr>
<td>[\Lambda^* = \text{argmax}_\Lambda P(x, \pi</td>
<td>\Lambda)]</td>
</tr>
<tr>
<td>Viterbi training, best path</td>
<td>Baum-Welch training, over all paths</td>
</tr>
</tbody>
</table>

Learning

5. Supervised learning, given \(\pi \)

\[\Lambda^* = \text{argmax}_\Lambda \max_{\pi} P(x, \pi | \Lambda) \]
Learning: How to train an HMM

Transition probabilities
- e.g. $P(P_{i+1}|B_i)$ – the probability of entering a pathogenicity island from background DNA

Emission probabilities
- i.e. the nucleotide frequencies for background DNA and pathogenicity islands
Two learning scenarios

Case 1. Estimation when the “right answer” is known

Examples:
GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

Case 2. Estimation when the “right answer” is unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the CpG islands there, neither do we know their composition

QUESTION: Update the parameters θ of the model to maximize $P(x|\theta)$
Two types of learning: Supervised / Unsupervised

5. Supervised learning
infer model parameters given labeled training data

- GIVEN:
 • a HMM M, with unspecified transition/emission probs.
 • labeled sequence x,
- FIND:
 • parameters $\theta = (E_i, A_{ij})$ that maximize $P[x | \theta]$

\Rightarrow Simply count frequency of each emission and transition, as observed in the training data

6. Unsupervised learning
infer model parameters given unlabelled training data

- GIVEN:
 • a HMM M, with unspecified transition/emission probs.
 • unlabeled sequence x,
- FIND:
 • parameters $\theta = (E_i, A_{ij})$ that maximize $P[x | \theta]$

\Rightarrow Viterbi training:
 guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate

\Rightarrow Baum-Welch training:
 guess parameters, sum over all paths (#4), update parameters (#5), iterate
5: Supervised learning

Estimate model parameters based on labeled training data
Case 1. When the right answer is known

Given \(x = x_1 \ldots x_N \) for which the true \(\pi = \pi_1 \ldots \pi_N \) is known,

Define:

\[
A_{kl} = \text{# times } k \rightarrow l \text{ transition occurs in } \pi
\]

\[
E_k(b) = \text{# times state } k \text{ in } \pi \text{ emits } b \text{ in } x
\]

We can show that the maximum likelihood parameters \(\theta \) are:

\[
a_{kl} = \frac{A_{kl}}{\sum_i A_{ki}}
\]

\[
e_k(b) = \frac{E_k(b)}{\sum_c E_k(c)}
\]
If we have a sequence that has islands marked, we can simply count:

\[
P(S|P) = \frac{1}{3} \quad P(S|B) = \frac{2}{3} \quad P(L_{i+1}|L_i) = \begin{array}{cc}
B_{i+1} & P_{i+1} \\
B_i & P_i
\end{array}
\]

Maximum Likelihood Estimation:

\[
P(S|B) = \begin{array}{llll}
A: & 1/5 \\
T: & 0 \\
G: & 2/5 \\
C: & 2/5
\end{array}
\]

ETC..
Case 1. When the right answer is known

Intuition: When we know the underlying states,
Best estimate is the average frequency of
transitions & emissions that occur in the training data

Drawback:
Given little data, there may be **overfitting**:
P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 nucleotides, we observe
\[x = \text{C, A, G, G, T, C, C, A, T, C} \]
\[\pi = \text{P, P, P, p, p, P, P, P, P, P} \]
Then:
\[a_{PP} = 1; \quad a_{PB} = 0 \]
\[e_P(A) = .2; \]
\[e_P(C) = .4; \]
\[e_P(G) = .2; \]
\[e_P(T) = .2 \]
Pseudocounts

Solution for small training sets:

Add pseudocounts

\[A_{kl} = \# \text{ times } k \rightarrow l \text{ transition occurs in } \pi + r_{kl} \]
\[E_k(b) = \# \text{ times state } k \text{ in } \pi \text{ emits } b \text{ in } x + r_k(b) \]

\(r_{kl}, r_k(b) \) are pseudocounts representing our prior belief

Larger pseudocounts \(\Rightarrow \) Strong prior belief

Small pseudocounts (\(\varepsilon < 1 \)): just to avoid 0 probabilities
Example: Training Markov Chains for CpG islands

• Training Set:
 – set of DNA sequences w/ known CpG islands

• Derive two Markov chain models:
 – ‘+’ model: from the CpG islands
 – ‘-’ model: from the remainder of sequence

• Transition probabilities for each model:

<table>
<thead>
<tr>
<th>+</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.180</td>
<td>.274</td>
<td>.426</td>
<td>.120</td>
</tr>
<tr>
<td>C</td>
<td>.171</td>
<td>.368</td>
<td>.274</td>
<td>.188</td>
</tr>
<tr>
<td>G</td>
<td>.161</td>
<td>.339</td>
<td>.375</td>
<td>.125</td>
</tr>
<tr>
<td>T</td>
<td>.079</td>
<td>.355</td>
<td>.384</td>
<td>.182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.300</td>
<td>.205</td>
<td>.285</td>
<td>.210</td>
</tr>
<tr>
<td>C</td>
<td>.322</td>
<td>.298</td>
<td>.078</td>
<td>.302</td>
</tr>
<tr>
<td>G</td>
<td>.248</td>
<td>.246</td>
<td>.298</td>
<td>.208</td>
</tr>
<tr>
<td>T</td>
<td>.177</td>
<td>.239</td>
<td>.292</td>
<td>.292</td>
</tr>
</tbody>
</table>

\[
\alpha_{st}^+ = \frac{C_{st}^+}{\sum_{t'} C_{st'}^+}
\]
\[
\alpha_{st}^- = \frac{C_{st}^-}{\sum_{t'} C_{st'}^-}
\]

\(C_{st}^+\) is the number of times letter \(t\) followed letter \(s\) inside the CpG islands

\(C_{st}^-\) is the number of times letter \(t\) followed letter \(s\) outside the CpG islands
6: Unsupervised learning

Estimate model parameters based on unlabeled training data
Unlabelled Data

How do we know how to count?

L:

S:

P(L_{i+1}|L_i)

<table>
<thead>
<tr>
<th>B_{i+1}</th>
<th>P_{i+1}</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_i</td>
<td>P_i</td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P(S|B)

A:
T:
G:
C:

P(S|P)

A:
T:
G:
C:
An idea:
1. Imagine we start with some parameters
2. We *could* calculate the most likely path, \(P^* \), given those parameters and \(S \)
3. We *could* then use \(P^* \) to update our parameters by maximum likelihood
4. And iterate (to convergence)
Learning case 2. When the right answer is unknown

We don’t know the true A_{kl}, $E_k(b)$

Idea:
- We estimate our “best guess” on what A_{kl}, $E_k(b)$ are (M step, maximum-likelihood estimation)
- We update the probabilistic parse of our sequence, based on these parameters (E step, expected probability of being in each state given parameters)
- We repeat

Two settings:
- Simple: Viterbi training (best guest = best path)
- Correct: Expectation maximization (all paths, weighted)
<table>
<thead>
<tr>
<th>One path</th>
<th>All paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoring</td>
<td>Scoring</td>
</tr>
<tr>
<td>1. Scoring (x), one path</td>
<td>2. Scoring (x), all paths</td>
</tr>
<tr>
<td>(P(x, \pi))</td>
<td>(P(x) = \sum_{\pi} P(x, \pi))</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Prob of emissions, over all paths</td>
</tr>
<tr>
<td>Decoding</td>
<td>Decoding</td>
</tr>
<tr>
<td>3. Viterbi decoding</td>
<td>4. Posterior decoding</td>
</tr>
<tr>
<td>(\pi^* = \text{argmax}_{\pi} P(x, \pi))</td>
<td>(\pi^\wedge = {\pi_i \mid \pi_i = \text{argmax}k \sum{\pi} P(\pi_i = k</td>
</tr>
<tr>
<td>Most likely path</td>
<td>Path containing the most likely state at any time point.</td>
</tr>
<tr>
<td>Learning</td>
<td>Learning</td>
</tr>
<tr>
<td>5. Supervised learning, given (\pi)</td>
<td>7. Unsupervised learning</td>
</tr>
<tr>
<td>(\Lambda^* = \text{argmax}_\Lambda P(x, \pi</td>
<td>\Lambda))</td>
</tr>
<tr>
<td>6. Unsupervised learning.</td>
<td>Baum-Welch training, over all paths</td>
</tr>
<tr>
<td>(\Lambda^* = \text{argmax}\Lambda \max{\pi} P(x, \pi</td>
<td>\Lambda))</td>
</tr>
</tbody>
</table>
Simple cases: Viterbi Training

Initialization:
Pick the best-guess for model parameters
(or arbitrary)

Iteration:
1. Perform Viterbi, to find π^*
2. Calculate A_{kl}, $E_k(b)$ according to $\pi^* +$ pseudocounts
3. Calculate the new parameters a_{kl}, $e_k(b)$

Until convergence

Notes:
- Convergence to local maximum guaranteed. Why?
- Does not maximize $P(x | \theta)$
- In general, worse performance than Baum-Welch
One path

1. Scoring x, one path

 $$P(x, \pi)$$

 Prob of a path, emissions

3. Viterbi decoding

 $$\pi^* = \arg\max_{\pi} P(x, \pi)$$

 Most likely path

5. Supervised learning, given π

 $$\Lambda^* = \arg\max_\Lambda P(x, \pi|\Lambda)$$

6. Unsupervised learning

 $$\Lambda^* = \arg\max_\Lambda \max_\pi P(x, \pi|\Lambda)$$

 Viterbi training, best path

All paths

2. Scoring x, all paths

 $$P(x) = \sum_{\pi} P(x, \pi)$$

 Prob of emissions, over all paths

4. Posterior decoding

 $$\pi^\Lambda = \{\pi_i | \pi_i = \arg\max_k \sum_{\pi} P(\pi_i = k|x)\}$$

 Path containing the most likely state at any time point.

6. Unsupervised learning

 $$\Lambda^* = \arg\max_\Lambda \sum_{\pi} P(x, \pi|\Lambda)$$

 Baum-Welch training, over all paths
Expectation Maximization (EM)

The basic idea is the same:

1. Use model to estimate missing data (E step)
2. Use estimate to update model (M step)
3. Repeat until convergence

EM is a general approach for learning models (ML estimation) when there is “missing data”

Widely used in computational biology

EM pervasive in computational biology

Rec 3 (SiPhy), Lec 8 (Kmeans), Lec 9 (motifs)
Expectation Maximization (EM)

1. Initialize parameters randomly

2. **E Step** Estimate **expected probability** of hidden labels, Q, given current (latest) parameters and observed (unchanging) sequence

 \[Q = P(Labels|S, params^{t-1}) \]

3. **M Step** Choose new **maximum likelihood** parameters over probability distribution Q, given current probabilistic label assignments

 \[params^t = \arg \max_{params} E_Q \left[\log P(S, labels | params^{t-1}) \right] \]

4. Iterate

 \[P(S|Model) \text{ guaranteed to increase each iteration} \]
Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters θ:

Given $x = x_1 \ldots x_N$
for which the true $\pi = \pi_1 \ldots \pi_N$ is unknown,

We can get to a provably more likely parameter set θ

Principle: \textbf{EXPECTATION MAXIMIZATION}

1. Estimate probabilistic parse based on parameters (E step)
2. Update parameters A_{kl}, E_k based on probabilistic parse (M step)
3. Repeat 1 & 2, until convergence
Estimating probabilistic parse given params (E step)

To estimate A_{kl}:

At each position i:

Find probability transition $k \rightarrow l$ is used:

$$P(\pi_i = k, \pi_{i+1} = l \mid x) = \frac{1}{P(x)} \times P(\pi_i = k, \pi_{i+1} = l, x_1 \ldots x_N) = Q/P(x)$$

where $Q = P(x_1 \ldots x_i, \pi_i = k, \pi_{i+1} = l, x_{i+1} \ldots x_N) = P(\pi_{i+1} = l, x_{i+1} \ldots x_N \mid \pi_i = k) P(x_1 \ldots x_i, \pi_i = k)$

So:

$$P(\pi_i = k, \pi_{i+1} = l \mid x, \theta) = \frac{f_k(i) a_{kl} e_l(x_{i+1}) b_l(i+1)}{P(x \mid \theta)}$$

(For one such transition, at time step $i \rightarrow i+1$)
New parameters given probabilistic parse (M step)

(Sum over all $k \rightarrow l$ transitions, at any time step i)

So,

$$A_{kl} = \sum_i P(\pi_i = k, \pi_{i+1} = l \mid x, \theta) = \sum_i \frac{f_k(i) a_{kl} e_{i}(x_{i+1}) b_{i+1}}{P(x \mid \theta)}$$

Similarly,

$$E_k(b) = \frac{1}{P(x)} \sum_{i \mid x_i = b} f_k(i) b_k(i)$$
Dealing with multiple training sequences

(Sum over all training seqs, all k→l transitions, all time steps i)

If we have several training sequences, \(x^1, \ldots, x^M \), each of length \(N \),

\[
A_{kl} = \sum_x \sum_i P(\pi_i = k, \pi_{i+1} = l \mid x, \theta) = \sum_x \sum_i \frac{1}{P(x)}
\]

Similarly,

\[
E_k(b) = \sum_x (1/P(x)) \sum \{i \mid x^i = b\} f_k(i) b_k(i)
\]
The Baum-Welch Algorithm

Initialization:
Pick the best-guess for model parameters (or arbitrary)

Iteration:
1. Forward
2. Backward
3. \(\Rightarrow \) Calculate new log-likelihood \(P(x \mid \theta) \) (E step)
4. Calculate \(A_{kl}, E_k(b) \)
5. \(\Rightarrow \) Calculate new model parameters \(a_{kl}, e_k(b) \) (M step)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until \(P(x \mid \theta) \) does not change much
The Baum-Welch Algorithm – comments

Time Complexity:

\# iterations \times O(K^2N)

- Guaranteed to increase the log likelihood of the model

\[P(\theta \mid x) = \frac{P(x, \theta)}{P(x)} = \frac{P(x \mid \theta)}{(P(x) P(\theta))} \]

- Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

- Too many parameters / too large model: Overtraining
<table>
<thead>
<tr>
<th>One path</th>
<th>All paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring x, one path</td>
<td>2. Scoring x, all paths</td>
</tr>
<tr>
<td>$P(x, \pi)$</td>
<td>$P(x) = \sum_{\pi} P(x, \pi)$</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Prob of emissions, over all paths</td>
</tr>
</tbody>
</table>

Scoring

3. Viterbi decoding

$$\pi^* = \arg\max_{\pi} P(x, \pi)$$

Most likely path

4. Posterior decoding

$$\pi^\Lambda = \{\pi_i \mid \pi_i = \arg\max_k \sum_{\pi} P(\pi_i=k|x)\}$$

Path containing the most likely state at any time point.

Decoding

5. Supervised learning, given π

$$\Lambda^* = \arg\max_{\Lambda} P(x, \pi | \Lambda)$$

6. Unsupervised learning

$$\Lambda^* = \arg\max_{\Lambda} \sum_{\pi} P(x, \pi | \Lambda)$$

Viterbi training, best path

Learning

- Viterbi training, best path
- Baum-Welch training, over all paths
Examples of HMMs for genome annotation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 states, different nucleotide composition</td>
<td>8 states, 4 each +/-, different transition probabilities</td>
<td>2 states, different conservation levels</td>
<td>2 states, different trinucleotide composition</td>
<td>2 states, different evolutionary signatures</td>
<td>~20 states, different composition/conservation, specific structure</td>
<td>40 states, different chromatin mark combinations</td>
</tr>
<tr>
<td>GC-rich / AT-rich</td>
<td>CpG-rich / CpG-poor</td>
<td>Conserved / non-conserved</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>First/last/middle coding exon, UTRs, intron1/2/3, intergenic, *(+/- strand)</td>
<td>Enhancer / promoter / transcribed / repressed / repetitive</td>
</tr>
<tr>
<td>Nucleotides</td>
<td>Di-Nucleotides</td>
<td>Level of conservation</td>
<td>Triplets of nucleotides</td>
<td>64x64 matrix of codon substitution frequencies</td>
<td>Codons, nucleotides, splice sites, start/stop codons</td>
<td>Vector of chromatin mark frequencies</td>
</tr>
</tbody>
</table>
What have we learned?

- **Generative model. Hidden states, observed emissions.**
 - Generate a random sequence
 - Choose random transition, choose random emission (#0)

- **Scoring: Finding the likelihood of a given sequence**
 - Calculate likelihood of annotated path and sequence
 - Multiply emission and transition probabilities (#1)
 - Without specifying a path, total probability of generating x
 - Sum probabilities over all paths
 - Forward algorithm (#3)

- **Decoding: Finding the most likely path, given a sequence**
 - What is the most likely path generating entire sequence?
 - Viterbi algorithm (#2)
 - What is the most probable state at each time step?
 - Forward + backward algorithms, posterior decoding (#4)

- **Learning: Estimating HMM parameters from training data**
 - When state sequence is known
 - Simply compute maximum likelihood A and E (#5a)
 - When state sequence is not known
 - Viterbi training: Iterative estimation of best path / frequencies (#5b)
 - Baum-Welch: Iterative estimation over all paths / frequencies (#6)
Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Calculating likelihoods $P(x, \pi)$ (algorithm 1)
 - Viterbi algorithm: Find $\pi^* = \arg\max_{\pi} P(x, \pi)$ (alg 3)
 - Forward algorithm: Find $P(x)$, over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
 - Finding GC-rich regions vs. finding CpG islands
 - Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘ parsing’
 - Find most likely state π_i, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only $x \rightarrow$ annotation + params