\(\ell_1 \)-norm Methods for Convex-Cardinality Problems

- problems involving cardinality
- the \(\ell_1 \)-norm heuristic
- convex relaxation and convex envelope interpretations
- examples
- recent results

Prof. S. Boyd, EE364b, Stanford University
\(\ell_1 \)-norm heuristics for cardinality problems

- cardinality problems arise often, but are hard to solve exactly
- a simple heuristic, that relies on \(\ell_1 \)-norm, seems to work well
- used for many years, in many fields
 - sparse design
 - LASSO, robust estimation in statistics
 - support vector machine (SVM) in machine learning
 - total variation reconstruction in signal processing, geophysics
 - compressed sensing
- new theoretical results guarantee the method works, at least for a few problems
Cardinality

• the **cardinality** of $x \in \mathbb{R}^n$, denoted $\text{card}(x)$, is the number of nonzero components of x

• card is separable; for scalar x, $\text{card}(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$

• card is quasiconcave on \mathbb{R}^n_+ (but not \mathbb{R}^n) since

 $$\text{card}(x + y) \geq \min\{\text{card}(x), \text{card}(y)\}$$

 holds for $x, y \geq 0$

• but otherwise has no convexity properties

• arises in many problems
General convex-cardinality problems

A **convex-cardinality problem** is one that would be convex, except for appearance of **card** in objective or constraints.

Examples (with C, f convex):

- Convex minimum cardinality problem:
 \[
 \begin{align*}
 \text{minimize} & \quad \text{card}(x) \\
 \text{subject to} & \quad x \in C
 \end{align*}
 \]

- Convex problem with cardinality constraint:
 \[
 \begin{align*}
 \text{minimize} & \quad f(x) \\
 \text{subject to} & \quad x \in C, \quad \text{card}(x) \leq k
 \end{align*}
 \]
Solving convex-cardinality problems

convex-cardinality problem with $x \in \mathbb{R}^n$

- if we fix the sparsity pattern of x (i.e., which entries are zero/nonzero) we get a convex problem

- by solving 2^n convex problems associated with all possible sparsity patterns, we can solve convex-cardinality problem (possibly practical for $n \leq 10$; not practical for $n > 15$ or so . . .)

- general convex-cardinality problem is (NP-) hard

- can solve globally by branch-and-bound
 - can work for particular problem instances (with some luck)
 - in worst case reduces to checking all (or many of) 2^n sparsity patterns
Boolean LP as convex-cardinality problem

• Boolean LP:
 \begin{align*}
 \text{minimize} & \quad c^T x \\
 \text{subject to} & \quad Ax \preceq b, \quad x_i \in \{0, 1\}
 \end{align*}

 includes many famous (hard) problems, \textit{e.g.}, 3-SAT, traveling salesman

• can be expressed as

 \begin{align*}
 \text{minimize} & \quad c^T x \\
 \text{subject to} & \quad Ax \preceq b, \quad \text{card}(x) + \text{card}(1 - x) \leq n
 \end{align*}

 since \(\text{card}(x) + \text{card}(1 - x) \leq n \iff x_i \in \{0, 1\} \)

• conclusion: general convex-cardinality problem is hard
Sparse design

minimize $\operatorname{card}(x)$
subject to $x \in \mathcal{C}$

• find sparsest design vector x that satisfies a set of specifications

• zero values of x simplify design, or correspond to components that aren’t even needed

• examples:
 – FIR filter design (zero coefficients reduce required hardware)
 – antenna array beamforming (zero coefficients correspond to unneeded antenna elements)
 – truss design (zero coefficients correspond to bars that are not needed)
 – wire sizing (zero coefficients correspond to wires that are not needed)
Sparse modeling / regressor selection

fit vector $b \in \mathbb{R}^m$ as a linear combination of k regressors (chosen from n possible regressors)

\[
\begin{align*}
\text{minimize} & \quad \|Ax - b\|_2 \\
\text{subject to} & \quad \text{card} (x) \leq k
\end{align*}
\]

- gives k-term model
- chooses subset of k regressors that (together) best fit or explain b
- can solve (in principle) by trying all $\binom{n}{k}$ choices
- variations:
 - minimize $\text{card}(x)$ subject to $\|Ax - b\|_2 \leq \epsilon$
 - minimize $\|Ax - b\|_2 + \lambda \text{card}(x)$
Sparse signal reconstruction

• estimate signal x, given

 – noisy measurement $y = Ax + v$, $v \sim \mathcal{N}(0, \sigma^2 I)$ (A is known; v is not)

 – prior information $\text{card}(x) \leq k$

• maximum likelihood estimate \hat{x}_{ml} is solution of

 minimize $\|Ax - y\|_2$
 subject to $\text{card}(x) \leq k$
Estimation with outliers

- we have measurements \(y_i = a^T_i x + v_i + w_i, \ i = 1, \ldots, m \)
- noises \(v_i \sim \mathcal{N}(0, \sigma^2) \) are independent
- only assumption on \(w \) is sparsity: \(\text{card}(w) \leq k \)
- \(B = \{ i \mid w_i \neq 0 \} \) is set of bad measurements or outliers
- maximum likelihood estimate of \(x \) found by solving

\[
\begin{align*}
\text{minimize} & \quad \sum_{i \notin B} (y_i - a^T_i x)^2 \\
\text{subject to} & \quad |B| \leq k
\end{align*}
\]

with variables \(x \) and \(B \subseteq \{1, \ldots, m\} \)

- equivalent to

\[
\begin{align*}
\text{minimize} & \quad \|y - Ax - w\|_2^2 \\
\text{subject to} & \quad \text{card}(w) \leq k
\end{align*}
\]
Minimum number of violations

• set of convex inequalities

\[f_1(x) \leq 0, \ldots, f_m(x) \leq 0, \quad x \in C \]

• choose \(x \) to minimize the number of violated inequalities:

\[
\begin{align*}
\text{minimize} & \quad \text{card}(t) \\
\text{subject to} & \quad f_i(x) \leq t_i, \quad i = 1, \ldots, m \\
& \quad x \in C, \quad t \geq 0
\end{align*}
\]

• determining whether zero inequalities can be violated is (easy) convex feasibility problem
Linear classifier with fewest errors

• given data \((x_1, y_1), \ldots, (x_m, y_m) \in \mathbb{R}^n \times \{-1, 1\}\)

• we seek linear (affine) classifier \(y \approx \text{sign}(w^T x + v)\)

• classification error corresponds to \(y_i(w^T x + v) \leq 0\)

• to find \(w, v\) that give fewest classification errors:

\[
\begin{align*}
\text{minimize} & \quad \text{card}(t) \\
\text{subject to} & \quad y_i(w^T x_i + v) + t_i \geq 1, \quad i = 1, \ldots, m
\end{align*}
\]

with variables \(w, v, t\) (we use homogeneity in \(w, v\) here)
Smallest set of mutually infeasible inequalities

• given a set of mutually infeasible convex inequalities
 \[f_1(x) \leq 0, \ldots, f_m(x) \leq 0 \]

• find smallest (cardinality) subset of these that is infeasible

• certificate of infeasibility is
 \[g(\lambda) = \inf_x (\sum_{i=1}^{m} \lambda_i f_i(x)) \geq 1, \lambda \succeq 0 \]

• to find smallest cardinality infeasible subset, we solve

 \[
 \begin{align*}
 \text{minimize} & \quad \text{card}(\lambda) \\
 \text{subject to} & \quad g(\lambda) \geq 1, \quad \lambda \succeq 0
 \end{align*}
 \]

(assuming some constraint qualifications)
Portfolio investment with linear and fixed costs

• we use budget B to purchase (dollar) amount $x_i \geq 0$ of stock i

• trading fee is fixed cost plus linear cost: $\beta \text{card}(x) + \alpha^T x$

• budget constraint is $1^T x + \beta \text{card}(x) + \alpha^T x \leq B$

• mean return on investment is $\mu^T x$; variance is $x^T \Sigma x$

• minimize investment variance (risk) with mean return $\geq R_{\text{min}}$:

\[
\begin{align*}
\text{minimize} & \quad x^T \Sigma x \\
\text{subject to} & \quad \mu^T x \geq R_{\text{min}}, \quad x \succeq 0 \\
& \quad 1^T x + \beta \text{card}(x) + \alpha^T x \leq B
\end{align*}
\]
Piecewise constant fitting

• fit corrupted x_{cor} by a piecewise constant signal \hat{x} with k or fewer jumps

• problem is convex once location (indices) of jumps are fixed

• \hat{x} is piecewise constant with $\leq k$ jumps $\iff \text{card}(D\hat{x}) \leq k$, where

$$D = \begin{bmatrix}
1 & -1 & & & \\
1 & -1 & & \\
& & \ddots & \ddots \\
& & & 1 & -1
\end{bmatrix} \in \mathbb{R}^{(n-1) \times n}$$

• as convex-cardinality problem:

$$\begin{align*}
\text{minimize} & \quad \|\hat{x} - x_{\text{cor}}\|_2 \\
\text{subject to} & \quad \text{card}(D\hat{x}) \leq k
\end{align*}$$
Piecewise linear fitting

- fit x_{cor} by a piecewise linear signal \hat{x} with k or fewer kinks

- as convex-cardinality problem:

$$\begin{align*}
\text{minimize} & \quad \|\hat{x} - x_{\text{cor}}\|_2 \\
\text{subject to} & \quad \text{card}(\nabla\hat{x}) \leq k
\end{align*}$$

where

$$\nabla = \begin{bmatrix}
-1 & 2 & -1 \\
-1 & 2 & -1 \\
\vdots & \vdots & \vdots \\
-1 & 2 & -1
\end{bmatrix}$$
ℓ_1-norm heuristic

- replace $\text{card}(z)$ with $\gamma \|z\|_1$, or add regularization term $\gamma \|z\|_1$ to objective

- $\gamma > 0$ is parameter used to achieve desired sparsity
 (when card appears in constraint, or as term in objective)

- more sophisticated versions use $\sum_i w_i |z_i|$ or $\sum_i w_i(z_i)_+ + \sum_i v_i(z_i)_-$, where w, v are positive weights
Example: Minimum cardinality problem

• start with (hard) minimum cardinality problem

\[
\begin{align*}
\text{minimize} & \quad \text{card}(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

(C convex)

• apply heuristic to get (easy) \(\ell_1\)-norm minimization problem

\[
\begin{align*}
\text{minimize} & \quad \|x\|_1 \\
\text{subject to} & \quad x \in C
\end{align*}
\]
Example: Cardinality constrained problem

• start with (hard) cardinality constrained problem \((f, C \text{ convex})\)

\[
\begin{align*}
\text{minimize} \quad & f(x) \\
\text{subject to} \quad & x \in C, \quad \text{card}(x) \leq k
\end{align*}
\]

• apply heuristic to get (easy) \(\ell_1\)-constrained problem

\[
\begin{align*}
\text{minimize} \quad & f(x) \\
\text{subject to} \quad & x \in C, \quad \|x\|_1 \leq \beta
\end{align*}
\]

or \(\ell_1\)-regularized problem

\[
\begin{align*}
\text{minimize} \quad & f(x) + \gamma \|x\|_1 \\
\text{subject to} \quad & x \in C
\end{align*}
\]

\(\beta, \gamma\) adjusted so that \(\text{card}(x) \leq k\)
Polishing

• use ℓ_1 heuristic to find \hat{x} with required sparsity

• fix the sparsity pattern of \hat{x}

• re-solve the (convex) optimization problem with this sparsity pattern to obtain final (heuristic) solution
Interpretation as convex relaxation

• start with

\[
\begin{align*}
\text{minimize} & \quad \text{card}(x) \\
\text{subject to} & \quad x \in C, \quad \|x\|_\infty \leq R
\end{align*}
\]

• equivalent to mixed Boolean convex problem

\[
\begin{align*}
\text{minimize} & \quad 1^T z \\
\text{subject to} & \quad |x_i| \leq Rz_i, \quad i = 1, \ldots, n \\
& \quad x \in C, \quad z_i \in \{0, 1\}, \quad i = 1, \ldots, n
\end{align*}
\]

with variables \(x, z\)
• now relax $z_i \in \{0, 1\}$ to $z_i \in [0, 1]$ to obtain

$$\begin{align*}
\text{minimize} & \quad 1^T z \\
\text{subject to} & \quad |x_i| \leq Rz_i, \quad i = 1, \ldots, n \\
& \quad x \in C \\
& \quad 0 \leq z_i \leq 1, \quad i = 1, \ldots, n
\end{align*}$$

which is equivalent to

$$\begin{align*}
\text{minimize} & \quad (1/R)\|x\|_1 \\
\text{subject to} & \quad x \in C
\end{align*}$$

the ℓ_1 heuristic

• optimal value of this problem is lower bound on original problem
Interpretation via convex envelope

• convex envelope f^{env} of a function f on set C is the largest convex function that is an underestimator of f on C

• $\text{epi}(f^{\text{env}}) = \text{Co}(\text{epi}(f))$

• $f^{\text{env}} = (f^*)^*$ (with some technical conditions)

• for x scalar, $|x|$ is the convex envelope of $\text{card}(x)$ on $[-1, 1]$

• for $x \in \mathbb{R}^n$ scalar, $(1/R)\|x\|_1$ is convex envelope of $\text{card}(x)$ on $\{z \mid \|z\|_\infty \leq R\}$
Weighted and asymmetric ℓ_1 heuristics

- minimize $\text{card}(x)$ over convex set C
- suppose we know lower and upper bounds on x_i over C

$$x \in C \implies l_i \leq x_i \leq u_i$$

(best values for these can be found by solving $2n$ convex problems)

- if $u_i < 0$ or $l_i > 0$, then $\text{card}(x_i) = 1$ (i.e., $x_i \neq 0$) for all $x \in C$
- assuming $l_i < 0$, $u_i > 0$, convex relaxation and convex envelope interpretations suggest using

$$\sum_{i=1}^{n} \left(\frac{(x_i)^+}{u_i} + \frac{(x_i)^-}{-l_i} \right)$$

as surrogate (and also lower bound) for $\text{card}(x)$
Regressor selection

\[
\begin{align*}
\text{minimize} & \quad \| Ax - b \|_2 \\
\text{subject to} & \quad \text{card}(x) \leq k
\end{align*}
\]

- heuristic:
 - minimize \(\| Ax - b \|_2 + \gamma \| x \|_1 \)
 - find smallest value of \(\gamma \) that gives \(\text{card}(x) \leq k \)
 - fix associated sparsity pattern \((i.e., \) subset of selected regressors) and find \(x \) that minimizes \(\| Ax - b \|_2 \)
Example (6.4 in BV book)

- $A \in \mathbb{R}^{10 \times 20}$, $x \in \mathbb{R}^{20}$, $b \in \mathbb{R}^{10}$
- dashed curve: exact optimal (via enumeration)
- solid curve: ℓ_1 heuristic with polishing
Sparse signal reconstruction

- convex-cardinality problem:

\[
\begin{align*}
\text{minimize} & \quad \|Ax - y\|_2 \\
\text{subject to} & \quad \text{card}(x) \leq k
\end{align*}
\]

- \(\ell_1\) heuristic:

\[
\begin{align*}
\text{minimize} & \quad \|Ax - y\|_2 \\
\text{subject to} & \quad \|x\|_1 \leq \beta
\end{align*}
\]

(called LASSO)

- another form: minimize \(\|Ax - y\|_2 + \gamma \|x\|_1\)

(called basis pursuit denoising)
Example

- signal $x \in \mathbb{R}^n$ with $n = 1000$, $\text{card}(x) = 30$
- $m = 200$ (random) noisy measurements: $y = Ax + v$, $v \sim \mathcal{N}(0, \sigma^2 1)$, $A_{ij} \sim \mathcal{N}(0,1)$
- left: original; right: ℓ_1 reconstruction with $\gamma = 10^{-3}$
• ℓ_2 reconstruction; minimizes $\|Ax - y\|_2 + \gamma \|x\|_2$, where $\gamma = 10^{-3}$
• left: original; right: ℓ_2 reconstruction
Some recent theoretical results

• suppose \(y = Ax, \ A \in \mathbb{R}^{m \times n}, \ \text{card}(x) \leq k \)
• to reconstruct \(x \), clearly need \(m \geq k \)
• if \(m \geq n \) and \(A \) is full rank, we can reconstruct \(x \) without cardinality assumption
• when does the \(\ell_1 \) heuristic (minimizing \(\|x\|_1 \) subject to \(Ax = y \)) reconstruct \(x \) (exactly)?
recent results by Candès, Donoho, Romberg, Tao, . . .

• (for some choices of A) if $m \geq (C' \log n)k$, ℓ_1 heuristic reconstructs x exactly, with overwhelming probability

• C' is absolute constant; valid A’s include

 – $A_{ij} \sim \mathcal{N}(0, \sigma^2)$
 – Ax gives Fourier transform of x at m frequencies, chosen from uniform distribution